
www.allitebooks.com

http://www.allitebooks.org

Cost-Based Oracle
Fundamentals

■ ■ ■

Jonathan Lewis

www.allitebooks.com

http://www.allitebooks.org

Cost-Based Oracle Fundamentals

Copyright © 2006 by Jonathan Lewis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-636-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis

Technical Reviewers: Christian Antognini, Wolfgang Breitling

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Production Director and Project Manager: Grace Wong

Copy Edit Manager: Nicole LeClerc

Senior Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreaders: Lori Bring, Kim Burton, Nancy Sixsmith

Indexer: Valerie Perry

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA

94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly

by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

Foreword . xiii

About the Author . xv

About the Technical Reviewers . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 What Do You Mean by Cost? . 1

■CHAPTER 2 Tablescans . 9

■CHAPTER 3 Single Table Selectivity . 41

■CHAPTER 4 Simple B-tree Access . 61

■CHAPTER 5 The Clustering Factor . 87

■CHAPTER 6 Selectivity Issues . 115

■CHAPTER 7 Histograms . 151

■CHAPTER 8 Bitmap Indexes . 181

■CHAPTER 9 Query Transformation . 207

■CHAPTER 10 Join Cardinality . 265

■CHAPTER 11 Nested Loops . 307

■CHAPTER 12 Hash Joins . 319

■CHAPTER 13 Sorting and Merge Joins . 353

■CHAPTER 14 The 10053 Trace File . 403

■APPENDIX A Upgrade Headaches . 453

■APPENDIX B Optimizer Parameters . 465

■INDEX . 475

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Foreword . xiii

About the Author . xv

About the Technical Reviewers . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 What Do You Mean by Cost? . 1

Optimizer Options . 1

So What Is the Cost? . 2

Transformation and Costing . 5

WYSIWYG? . 7

Summary . 8

Test Cases . 8

■CHAPTER 2 Tablescans . 9

Getting Started . 9

Onwards and Upwards . 14

Effects of Block Sizes . 14

CPU Costing . 16

The Power of CPU Costing . 22

The BCHR Is Dead! Long Live the BCHR! . 25

Parallel Execution . 28

Index Fast Full Scan . 31

Partitioning . 34

Summary . 39

Test Cases . 40

■CHAPTER 3 Single Table Selectivity . 41

Getting Started . 41

Null Values . 44

Contents

www.allitebooks.com

http://www.allitebooks.org

vi ■C O N T E N T S

Using Lists . 45

10g Update . 49

Range Predicates . 50

10g Update . 54

Two Predicates . 55

Problems with Multiple Predicates . 58

Summary . 59

Test Cases . 60

■CHAPTER 4 Simple B-tree Access . 61

Basics of Index Costing . 61

Getting Started . 63

Effective Index Selectivity . 66

Effective Table Selectivity . 67

clustering_factor. 67

Putting It Together . 69

Extending the Algorithm. 71

The Three Selectivities . 78

CPU Costing . 81

Loose Ends . 84

Summary . 85

Test Cases . 85

■CHAPTER 5 The Clustering Factor . 87

Baseline Example . 87

Reducing Table Contention (Multiple Freelists) 90

Reducing Leaf Block Contention (Reverse Key Indexes) 94

Reducing Table Contention (ASSM) . 96

Reducing Contention in RAC (Freelist Groups). 99

Column Order . 101

Extra Columns . 104

Correcting the Statistics . 106

The sys_op_countchg() Technique. 106

Informal Strategies . 111

Loose Ends . 112

Summary . 112

Test Cases . 113

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S vii

■CHAPTER 6 Selectivity Issues . 115

Different Data Types . 115

Date Values . 116

Character Values. 116

Daft Data Types . 118

Leading Zeros . 122

Deadly Defaults . 124

Discrete Dangers . 126

10g Update . 130

Surprising sysdate . 130

Function Figures . 132

Correlated Columns . 134

Dynamic Sampling . 137

Optimizer Profiles . 139

Transitive Closure . 141

Constraint-Generated Predicates . 144

Summary . 148

Test Cases . 148

■CHAPTER 7 Histograms . 151

Getting Started . 151

Generic Histograms . 157

Histograms and Bind Variables . 157

When Oracle Ignores Histograms . 160

Frequency Histograms . 162

Faking Frequency Histograms . 166

Warning to Fakers. 167

“Height Balanced” Histograms . 169

The Arithmetic . 172

Data Problems Revisited . 175

Daft Datatypes. 175

Dangerous Defaults . 178

Summary . 179

Test Cases . 180

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

■CHAPTER 8 Bitmap Indexes . 181

Getting Started . 181

The Index Component . 186

The Table Component . 188

Bitmap Combinations . 190

Low Cardinality . 192

Null Columns . 195

CPU Costing . 198

Interesting Cases . 200

Multicolumn Indexes . 200

Bitmap Join Indexes . 201

Bitmap Transformations. 202

Summary . 205

Test Cases . 205

■CHAPTER 9 Query Transformation . 207

Getting Started . 208

Evolution . 211

Filtering . 211

Filter Optimization. 215

Scalar Subqueries. 217

Subquery Factoring . 224

Complex View Merging . 230

Pushing Predicates . 232

General Subqueries . 234

Subquery Parameters. 236

Categorization . 237

Semi-Joins . 243

Anti-Joins. 246

Anti-join Anomaly . 248

Nulls and Not In. 249

The ordered Hint . 250

Star Transformation Joins . 252

Star Joins . 258

The Future . 260

Summary . 262

Test Cases . 263

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

■CHAPTER 10 Join Cardinality . 265

Basic Join Cardinality . 265

Biased Joins . 269

Join Cardinality for Real SQL . 271

Extensions and Anomalies . 274

Joins by Range . 275

Not Equal . 276

Overlaps . 278

Histograms . 280

Transitive Closure . 283

Three Tables . 288

Nulls . 291

Implementation Issues . 295

Difficult Bits! . 299

Features . 301

An Alternative Viewpoint . 303

Summary . 304

Test Cases . 305

■CHAPTER 11 Nested Loops . 307

Basic Mechanism . 307

Worked Example . 312

Sanity Checks . 314

Summary . 318

Test Cases . 318

■CHAPTER 12 Hash Joins . 319

Getting Started . 319

The Optimal Hash Join . 323

The Onepass Hash Join . 325

The Multipass Hash Join . 331

Trace Files . 335

Event 10104 . 336

Event 10053 . 338

Headaches . 339

Traditional Costing . 339

Modern Costing. 340

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

Comparisons . 341

Multitable Joins . 347

Summary . 350

Test Cases . 350

■CHAPTER 13 Sorting and Merge Joins . 353

Getting Started . 353

Memory Usage . 359

CPU Usage . 360

sort_area_retained_size . 364

pga_aggregate_target . 365

Real I/O . 368

Cost of Sorts . 370

10053 trace . 371

Comparisons . 375

Merge Joins . 379

The Merge Mechanism . 379

A Merge Join Without the First Sort . 384

The Cartesian Merge Join . 385

Aggregates and Others . 387

Indexes. 392

Set Operations. 393

Final Warning . 398

Summary . 399

Test Cases . 400

■CHAPTER 14 The 10053 Trace File . 403

The Query . 404

The Execution Plan . 405

The Environment . 406

The Trace File . 407

Parameter Settings . 407

Query Blocks . 411

Stored Statistics . 412

Single Tables . 414

Sanity Checks . 416

General Plans . 416

Join order[1] . 417

Join order[2] . 423

■C O N T E N T S xi

Join order[3] . 424

Join order[4] . 424

Join order[5] . 425

Join order[6] . 429

Join order[7] . 429

Join order[8] . 433

Join order[9] . 435

Join order[10] . 435

Join order[11] . 436

Join order[12] . 439

Join order[13] . 441

Join order[14] . 443

Join order[15] . 444

Join order[16] . 444

Join order[17] . 445

Join order[18] . 447

Join Evaluation Summary . 449

Test Cases . 451

■APPENDIX A Upgrade Headaches . 453

dbms_stats . 453

Frequency Histograms . 454

CPU Costing . 455

Rounding Errors . 455

Bind Variable Peeking . 455

Nulls Across Joins . 456

B-tree to Bitmap Conversions . 456

Index Skip-Scans . 456

AND-Equal . 456

Index Hash Join . 457

In-List Fixed . 457

Transitive Closure . 458

sysdate Arithmetic Fixed . 458

Indexing Nulls . 459

pga_aggregate_target . 459

Sorting . 460

Grouping . 460

Sanity Checks . 460

Going Outside the Limits . 460

Type Hacking . 460

xii ■C O N T E N T S

optimizer_mode . 461

Descending Indexes . 461

Complex View Merging . 461

Unnest Subquery . 461

Scalar and Filter Subqueries . 461

Parallel Query Changes x 2 . 462

Dynamic Sampling . 462

Temporary Tables . 462

Dictionary Stats . 462

■APPENDIX B Optimizer Parameters . 465

optimizer_features_enable . 465

The 10053 Trace File . 467

v$sql_optimizer_env . 473

■INDEX . 475

xiii

Foreword

Arthur C. Clarke once wrote that “any sufficiently advanced technology is indistinguishable

from magic.” I believe that observation to be entirely accurate. Someone else later observed

that “any technologist with sufficient knowledge is indistinguishable from a magician.” With

that in mind, what you have in your hands right now is a book on magic.

However, for as long as I’ve known the author of this book, Jonathan Lewis (some 11 years

according to my research on Google going back over the newsgroup archives), he has never

been content to accept “magic.” He wants to know why something happens the way it does. So,

fundamentally, his book is all about understanding:

understand v. understood, (-std) understanding, understands

 1. To perceive and comprehend the nature and significance of

 2. To know thoroughly by close contact or long experience with

More precisely, it is all about understanding the Oracle cost based optimizer (CBO), how it

works, and why it does what it does. Jonathan conveys to us his understanding of the Oracle

CBO through practice and example, and with this understanding, with this knowledge, new

options and solutions become available.

Put simply, the Oracle CBO is a mathematical model; you feed it inputs (queries, statistics),

and it produces outputs (query plans). In order to use the CBO successfully, it is critical that you

understand what these inputs are and how the CBO uses them. Consider the following question,

one that I’ve tried to answer many times: What is the best way to collect statistics, what statistics

should I gather? Seems simple enough, very straightforward—there should be an answer and

there is, but it is no “one size fits all” answer. It depends on your circumstances, your data

distribution, your queries, the type of system you have (transactional, data warehouse)—a

whole host of factors—and it is only through an understanding of how the CBO works and of

how these factors affect the CBO that you’ll be able to answer the question for yourself.

My favorite chapter in this book is Chapter 7, which provides an excellent discussion on

what histograms do, how the CBO uses them, and some of the myths that surround them (they

are a frequently misunderstood input to the CBO). One of the reasons it is my favorite chapter

is because I still remember hearing this chapter for the first time (not reading it, hearing it). It

was about three years ago, at the NoCOUG (Northern California Oracle User Group) meeting.

I attended Jonathan’s Histograms session and, for the first time, felt that I truly understood how

histograms worked in Oracle. Jonathan provided practical information, of immediate day-to-

day use, and as a result I was in a much better position to answer the question just posed. In this

book, you will find many such topics described in that same practical, immediately usable way.

The insights that Jonathan provides into the workings of the cost based optimizer will

make a DBA a better designer and a developer a better SQL coder. Both groups will become

better troubleshooters as a result. Jonathan’s meticulous and abundant examples make the

complex workings of the CBO understandable for the rest of us.

xiv ■F O R E W O R D

Time and time again, it has been proven that you can only use a tool safely and effectively

once you understand how it works. This is true of software, hardware, and pretty much every-

thing else in life. In which case, what you have in your hands is a book that will allow you to

make safe and effective use of the tool that is the Oracle CBO.

Thomas Kyte

VP (Public Sector), Oracle Corporation

xv

About the Author

■JONATHAN LEWIS is a qualified teacher with a mathematics degree from

Oxford University. Although his interest in computers came to light at

the tender age of about 12—in the days when high-technology meant

you used a keyboard, rather than a knitting needle to punch holes in

cards—it wasn’t until he was four years out of university that he moved

into computing professionally. Apart from an initial year as an incompetent

salesman, he has been self-employed his entire career in the computer

industry.

His initiation into Oracle was on version 5.1 running on a PC, which he used to design and

build a risk-management system for the crude-trading floor of one of the major oil companies.

He had written the first version of the system using a PC program called dBase III—which did

use tables and indexes and made some claims to being a relational database management

system. Suddenly he found out what a proper Relational Database Management System ought

to be able to do.

Since that day of revelation, Jonathan has focused exclusively on the use and abuse of the

Oracle RDBMS. After three or four years of contract work helping to build large systems, he

decided to move from the “contractor” market to the “consultant” market, and now shares his

time evenly between short-term consultancy work, running seminars, and “research.”

At the time of writing, he is one of the directors of the UK Oracle User Group (www.ukoug.com),

and a regular contributor to their quarterly magazine and presenter at their Special Interest

Groups (particularly the RDBMS and UNIX groups). Whenever the opportunity arises, he tries

to find time for speaking to user groups outside the UK, sometimes as short evening events at

the end of a day’s consultancy work. He also maintains a web site (www.jlcomp.demon.co.uk) of

articles and notes on things that you can do with the Oracle RDBMS.

Jonathan has been married to Diana (currently a primary school teacher after many years

of being an accountant) for nearly 20 years, and has two children: Anna (actress and trumpet

player) and Simon (rugby and saxophone player). Given the choice between working on a

Saturday and supporting a rugby match or school concert—it’s the school event that comes first.

xvii

About the Technical
Reviewers

■CHRISTIAN ANTOGNINI has focused on understanding how the Oracle database engine works

since 1995. His main interests range from logical and physical database design, the integration of

databases with Java applications, to the cost based optimizer, and basically everything else

related to performance management and tuning. He is currently working as a senior consultant

and trainer at Trivadis AG (www.trivadis.com) in Zürich, Switzerland. If he is not helping one of

his customers to get the most out of Oracle, he is somewhere lecturing on optimization or new

Oracle database features for developers.

Christian lives in Ticino, Switzerland, with his wife, Michelle, and their two children, Sofia

and Elia. He spends a great deal of his spare time with his wonderful family and, whenever

possible, reading books, enjoying a good movie, or riding one of his BMX bikes.

■WOLFGANG BREITLING was born in Stuttgart, Germany, and studied mathematics, physics, and

computer sciences at the University of Stuttgart. After graduating, he joined the QA department

of IBM Germany’s development laboratory in Böblingen. There he became one of a team of two

to develop an operating system to test the hardware of the /370 model machines developed in

the Böblingen lab.

Wolfgang’s first direct foray into the field of performance evaluation/tuning was the devel-

opment of a program to test the speed of individual operating codes of the /370 architecture.

After IBM Germany, he worked as a systems programmer on IBM’s hierarchical databases DL/1

and IMS in Switzerland before emigrating to his current home in Calgary, Canada. Following

several years as systems programmer for IMS and later DB2 databases on IBM mainframes, he

got on the project to implement Peoplesoft on Oracle.

In 1996, he became an independent consultant specializing in administering and tuning

Peoplesoft on Oracle. In that capacity, Wolfgang has been engaged in several Peoplesoft instal-

lation and upgrade projects. The particular challenges in tuning Peoplesoft, with often no access to

the SQL, motivated him to explore Oracle’s cost based optimizer in an effort to better understand

how it works and use that knowledge in tuning. He has shared the findings from this research

in papers and presentations at IOUG, UKOUG, local Oracle user groups, and other conferences

and newsgroups dedicated to Oracle performance topics.

Wolfgang has been married to his wife Beatrice for over 30 years and has two children,

Magnus and Leonie. When he is not trying to decipher the CBO, Wolfgang enjoys canoeing and

hiking in the Canadian prairies and Rocky Mountains.

xix

Acknowledgments

First and foremost, I have to thank my wife and children for putting up with my distant expres-

sions, long silences, and my habit of being physically present while mentally absent. They have

been very patient with my mantra to “give me just five more minutes.”

I would like to thank those Oracle experts and adventurers around the world who (know-

ingly or unknowingly) have extended my knowledge of the database. In particular, though not

exclusively, I owe thanks to (in alphabetical order) Steve Adams, Wolfgang Breitling, Julian Dyke,

K. Gopalakrishnan, Stephan Haisley, Anjo Kolk, Tom Kyte, James Morle, and Richmond Shee.

Each of them has, at various times, supplied me with insights that have allowed me to open up

whole new areas of investigation and understanding. Insights are so much more important

than answers.

Christian Antognini and Wolfgang Breitling merit special thanks for reading the draft chap-

ters, and for making a number of suggestions to improve the quality of the book. Any outstanding

errors are, of course, all my own work.

There are many more individuals who deserve to be named as sources of ideas and infor-

mation, but the more I name, the greater the injustice to those whose names I let slip. So let me

cover them all by thanking those who post on the comp.databases.oracle newsgroups, those

who post on the Oracle-L mailing list, and those who post on Oracle Corporation’s MetaLink

forums. And, of course, there are the members of the Oak Table Network who can be relied

upon to provide entertaining and stimulating discussions.

I would also like to mention the audiences who attend my seminar Optimizing Oracle:

Performance by Design. At the end of each of these three-day events, I always have several new

questions to answer, points to clarify, and strange cases to investigate.

The most important part of what I do is to deal with production database systems, so I also

want to thank the many companies who have decided to call me in for a few days to examine

their problems, validate their designs, or just give them some guidelines. Without continuous

input and challenge from real users, real requirements, and real applications, it would be

impossible to write a book that could be of practical benefit to its readers.

Finally, I owe a big thank you to the Apress editorial and production teams who worked

incredibly hard to beat a tough deadline: Tony Davis, Ami Knox, Katie Stence, and Grace Wong.

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

When I wrote Practical Oracle 8i, I said in the foreword that “if you write a technical book

about Oracle, then it will be out of date by the time you’ve finished writing it.” Addison-Wesley

published the book about the same time that Larry Ellison announced the official release of

Oracle 9i. Three weeks after publication, I got the first e-mail message asking me if I had plans

for a 9i version of the book.

From that day onwards, I have resisted all requests for an “upgrade,” on the basis that (a) it

was far too much hard work, (b) I would have to spend a couple of years using Oracle 9i before

I thought I could put some useful new information into a book, and (c) it would still be just the

same book with a few small changes.

So there I was: I started writing in September 2003 (yes really, 2003; it took me 22 months

to write this volume), exactly four years after I decided to write Practical Oracle 8i. (Remember

September 1999, when nobody wanted to employ an Oracle specialist unless they could debug

40-year-old COBOL?) I had had enough exposure to Oracle 9i to make it worth writing a new

book. Of course, in those four years there had been several upgrades to Oracle 8i (finishing at

8.1.7.4), two major releases of Oracle 9i, and, as I started writing, Oracle 10g was launched at

Oracle World. I was about ready to write Practical Oracle 9i—just too late.

In fact, just as I finished writing this book (in June 2005), the Linux port for 10g Release 2

was made available on OTN! So the first thing you can do with this book is to start running my

test cases against 10gR2 to see how many things have changed.

Instead of producing an upgrade for Practical Oracle 8i, I’ve embarked on a project to write

up all I know about cost-based optimization. It sounded like a very easy project to start with—

I can talk for hours about things that the optimizer does, and why it does them; all I had to do

was write it down.

Unfortunately, the task has turned out to be a lot harder than I expected. Pouring out words

is easy—producing a well-structured book that will be useful is a completely different matter.

Show me something that the CBO has done and I can explain why—perhaps after creating and

testing a couple of theories. Ask me to give someone else enough generic information about the

optimizer to allow them to do the same, and it’s a completely different issue.

Eventually, I managed to produce a framework for the task, and realized that I had to write

at least three books: the fundamentals, some enhanced stuff, and all the peripherals. The book

you are holding covers just the fundamentals of cost-based optimization.

Why Bother?
Why do we want to know how the CBO works? Because when we hit a problem where the opti-

mizer produces a very bad execution plan, we want to understand what the problem is so that

we can supply the right fix.

xxii ■I N T R O D U C T I O N

Of course, we may be able to fix that one problem by adding some hints to the SQL or doing

a cunning little rewrite, but if we take that approach, we may have to do that same thing time

and time again as the problem reappears in other places.

On the other hand, if we understand the underlying issue, we can fix the issue once and

know that we have addressed every occurrence of the problem.

What’s in This Book
This volume covers the basic details of optimization. It is not intended as a complete reference

to how the optimizer works—you only have to notice that, with 14 chapters available, I don’t

get on to joins until Chapter 10, and you will realize that there is a huge amount to cover.

The important buzz words for optimization are

• Selectivity and cardinality: What fraction of the data will a predicate identify and how

many rows does that turn into.

• Access path: Should a query use a B-tree index, or perhaps combine a couple of bitmaps

indexes, or ignore indexes completely when visiting a table.

• Join order: Which table should a query visit first, and where should it go from there to do

the least work to get the required result.

Although I will make a few comments about some of the more subtle features that need to

be considered, this book really does restrict itself to just a critical handful of core concepts.

How does the optimizer work out how much data a predicate is going to produce? How does it

invent a number to represent the work of doing a tablescan, and how does it compare that with

the work needed to use an index? What sort of figures go into estimating the resources needed

to sort, or do a hash join?

I can examine a query, the objects in it, and the 10053 trace file, and usually explain why

one path has been taken in preference to another path. Unfortunately, I can’t tell you how to do

the same with every trace file you are ever going to see, because I can’t cover all the options

(I haven’t even seen all the options yet), and this would be a very tedious book if I tried.

But even though I can’t possibly tell you all the answers, I believe this book may give enough

of the basic methods to let you work out what’s going on in most of the cases you will have

to examine.

What’s Not in This Book
Inevitably there have to be omissions. Some things I have ignored because they are peripheral

to the core activity of the optimizer, some I have ignored because they still have a very small

audience, some had to be excluded through lack of space.

I haven’t mentioned the rule based optimizer (RBO) at all because everyone should be trying to

get rid of it. I haven’t mentioned anything in the realm of the extensible optimizer (including

context and spatial indexing) because they are not mainstream topics. I haven’t mentioned

analytic functions, model clauses (10g), or OLAP, because they are all initially driven by the need

to acquire data before they do their own brand of number crunching—and the acquisition is

probably the most time-critical aspect of the job.

■I N T R O D U C T I O N xxiii

I haven’t mentioned objects—because they don’t exist as far as the optimizer is concerned.

When you create an object type and create data segments of object types, Oracle turns them

into simple tables and indexes—the optimizer doesn’t care about objects.

Finally, I have hardly mentioned parallel query, partitioned tables, distributed queries, and

some of the slightly more subtle physical options of Oracle, such as clusters and IOTs. These

omissions are necessary for two reasons: first, lack of room, and second, a desire to avoid blurring

the important points in a welter of related details. There is a lot to the optimizer, it’s hard to

keep it in focus, and it’s best to take it a bit at a time.

What’s in Future Books
This book is the first in a series of three. Future volumes will cover important Oracle features, in

particular partitioned tables, parallel execution, index organized tables, dynamic sampling,

and query rewrite.

There will also be more advanced information on material previously covered in this

volume, such as further access paths for B-tree indexes, comparisons between cluster access

and indexed access, and more details on histograms.

The final important tranche of information that goes with cost-based optimization is the

infrastructure to support it and allow you to understand it. The major topics here are under-

standing and interpreting execution plans, understanding the meaning and use of hints, and

getting the best out of the dbms_stats package.

This book is based on 9.2, with observations on its differences from 8i, and comments

about how 10g has introduced more change. Future volumes will make very little explicit refer-

ence to 8i, and say much more about 10g.

Organization
The chapters of this book cover the following topics in the order listed:

• Tablescans: Which help to start us off simply, and say something about CPU costing.

• Simple selectivity: Only one table, but lots of important arithmetic ideas.

• Simple B-tree indexes: The difference between single and multiblock reads.

• The clustering factor: Perhaps the most critical feature of an index.

• More subtle selectivity: An introduction to the many minor variations on a basic theme.

• Histograms: Why you may need a few, and the difference between OLTP and DSS/DW.

• Bitmap indexes: Because not all indexes are equal.

• Transformations: What you see is not necessarily what you get.

• Joins: Four whole chapters just to join two tables.

• The 10053 trace: A worked example.

• Upgrade issues: A collection of warning and notes, collated from the rest of the book.

xxiv ■I N T R O D U C T I O N

Each chapter contains a number of code extracts from a set of SQL scripts that are available

by download from Apress (www.apress.com). These scripts are there so that you can run them on

your own system to reproduce and investigate the observation made in the chapter. Make sure

you examine these scripts, as they contain extra comments and some extra tests that are not

mentioned in the main body of the text. I will also be publishing these scripts on my web site

(www.jlcomp.demon.co.uk) enhancing them, and adding further commentary from time to time.

The scripts are important—things do change, and changes can have a serious effect on

your production systems. If you have scripts to test basic mechanisms, then you can repeat the

tests on every upgrade to see if there are any changes that you need to know about.

One important point to note about the extracts that appear in the body of the text is that

they often include lines to standardize the test environment, for example:

alter session set "_optimizer_system_stats_usage" = false;

Don’t use commands like these in a production system just because they appear in this book.

They are not there as an example of good programming practice; they are there in an effort to

avoid the side effects that appear when one database has (for example) a completely different

set of system statistics from another.

You will also find three init.ora files on the CD, and a script for creating test tablespaces

in 9i and 10g. All four files will have to be edited to deal with problems of directory naming

conventions; and the init.ora files for 9i and 10g will also have to be adjusted to suit your

rollback/undo management options. I have chosen to run with init.ora files for 9i and 10g

to avoid accidental changes to an spfile, but you may wish to merge the init.ora settings into

an spfile.

The Obligatory Dire Warning
Whenever someone asks me to autograph a copy of Practical Oracle 8i, alongside my signature

I always offer to include my motto: Never believe all you read. (If you ask me to sign your copy

of this book, the motto will be Just because it’s printed, doesn’t mean it’s true.) There are always

special cases, different parameter settings, and bugs. (Not to mention thousands of things that

I don’t know, and some things that I think I know but haven’t got right.)

Consider the following simple experiment (script in-list.sql in the online code suite)—

run on a locally managed tablespace, using manual segment space management, with an 8KB

block size:

create table t1 as

select

 trunc((rownum-1)/100) n1,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 1000

;

-- Collect statistics using dbms_stats here

■I N T R O D U C T I O N xxv

set autotrace traceonly explain

select *

from t1

where

 n1 in (1,2)

;

Because of the trunc() function, the n1 column takes the values from 0 to 9, with 100 occur-

rences of each value. So the query will return 200 rows. Run this test under 8.1.7.4, and then

9.2.0.6, and check the cardinality reported by autotrace. I got the following results:

Execution Plan (8.1.7.4 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=190 Bytes=19570)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=3 Card=190 Bytes=19570)

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=200 Bytes=20400)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=4 Card=200 Bytes=20400)

In 8.1.7.4, the optimizer gives an estimate of 190 rows as the cardinality of the result set. In

9.2.0.6, the optimizer has an algorithm that produces an estimate of 200 as the cardinality of the

result set. This happens to be correct—and it is the result of an error in the optimizer code being

fixed.

Before 9i was released, my three-day seminar included the observation that the calculations in

8i seemed to allow for a possible benefit that could be obtained when mixing indexed access

paths and in-lists. Then 9i came out, and I ran the test I’ve just described and realized that it

wasn’t a cunning calculation in 8i, it was a bug. (See Chapter 3 for more details.)

So if your experience contradicts my claims, you may have a configuration that I haven’t

seen—I’ve only got through a few hundred databases in my lifetime, and there must be millions

of combinations of configuration and data distribution details that could make a difference. In

most cases, the download includes scripts to allow you to reproduce the test cases in the book—so

you can at least check whether my test cases behave as predicted when run on your system.

Whatever the results, you may get some clues about why your observations differ from my

observations.

It is left as an exercise to the reader to compare the results from 9.2.0.6 and (specifically)

10.1.0.4 when you change the predicate in the previous query from

 where n1 in (1,2);

to

 where n1 in (11, 12);

and then change the literal values to ever increasing values. The results are quite surprising—

and will be mentioned further in Chapter 3.

xxvi ■I N T R O D U C T I O N

Theory vs. Practice

It is important to keep reminding yourself as you read this book that there are two separate

stages to running a query. First, the optimizer works out what it “thinks” is going to happen,

then the run-time engine does what it wants to do.

In principle, the optimizer should know about, describe, and base its calculations on the

activity that the run-time engine is supposed to perform. In practice, the optimizer and the

run-time engine sometimes have different ideas about what they should be doing.

explain plan

In a later book in this series, I will describe the methods you can use to acquire execution plans,

and list various reasons why the resulting plans may be wrong, or at least misleading. For the

present, therefore, let me just say that most of the examples in this book use autotrace or the

dbms_xplan package to display execution plans for reasons of simplicity.

However, when I am on-site investigating a real problem and have any reason to doubt

these theoretical tools, I may choose to run any problem queries so that I can check the 10053

trace files, the statistical information from the 10046 trace files, and the contents of v$sql_plan.

And for cases involving partitioned objects or parallel executions, I may use a couple of other

trace events to pin down details that are not otherwise available in any form of the execution

plan.

All the tools for generating or investigating execution plans have some deficiencies. Do not

depend on autotrace or dbms_xplan simply because they seem to be the only things I use in

this book.

Conclusion
When you’ve finished reading this book (the first time), there are three key things that I hope

you will remember from it.

First, there is usually a good solution to your business problem somewhere in the execution

paths available to the optimizer. You just have to work out what the path is, and how to make it

happen.

Second, anyone can build good, incremental tests that start small and simple but grow in

scale and subtlety when, and only when, the situation warrants it.

Finally, if you observe a performance problem and find yourself addressing it in terms of

the data content, requirements for access, and physical storage strategies, then you’ve learned

the most important lesson this book has to offer.

With Apologies to the Late Douglas Adams
There is a theory stating that if ever anyone discovers exactly what the cost based optimizer

does and how it works, it will instantly disappear and be replaced by something even more

bizarre and inexplicable.

There is another theory that states this has already happened ... twice.

■I N T R O D U C T I O N xxvii

Test Cases
The files in the download for the preface are as follows:

Script Comments

in_list.sql Demonstration of changes in the in-list iterator selectivity calculation

setenv.sql Sets a standardized environment for SQL*Plus

1

■ ■ ■

C H A P T E R 1

What Do You Mean by Cost?

You have to be a little careful when you talk about the cost of an SQL statement because it’s

very easy to use the word in two different ways simultaneously. On one hand, you may be

thinking about the magic number generated by a tool such as explain plan; on the other, you

may be thinking about the actual resource consumption as a statement executes. In theory, of

course, there ought to be a nice, simple relationship between the two, and it shouldn’t be

necessary to be so fussy about the meaning.

In this book, the word cost will always mean the result of the calculation performed by the

optimizer. The purpose of the book is to explain the main features of how the optimizer does

the calculations that produce the cost figure that determines the execution plan for an SQL

statement.

As a side effect of this explanation, I will also describe some of the problems that allow the

optimizer to produce a cost that appears to have nothing to do with actual resource consumption.

It is my fond hope that as you read this book, you will experience magic moments when you

say, “So that’s why query X keeps doing that ...”

Optimizer Options
The commonest type of statement is the select statement—but even though the rest of this

book will focus almost exclusively on selects, it is worth remembering that any statement, be

it a query, DML (such as an update), or DDL (such as an index rebuild) is subject to analysis by the

cost based optimizer (CBO).

Oracle has three variants on its cost based optimizer. The three variants have different

constraints built into their code, but they all follow the same strategy—which is to find the

execution mechanism that uses the fewest resources to achieve the required result for a given

statement. The variants are identified by the legal settings of the parameter optimizer_mode:

• all_rows: The optimizer will attempt to find an execution plan that completes the state-

ment (typically meaning “returns all the rows”) in the shortest possible time. There are

no special constraints built into this code.

• first_rows_N: The number N can be 1, 10, 100, or 1000 (and as a further refinement there

is the first_rows(n) hint, where the number n can be any positive whole number). The

optimizer first estimates the number of rows that will be returned by completely analyzing

just the first join order. This tells it what fraction of the total data set the query is supposed

to fetch, and it restarts the entire optimization process with the target of finding the

execution plan that minimizes the resources required to return that fraction of the total

data. This option was introduced in 9i.

www.allitebooks.com

http://www.allitebooks.org

2 C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ?

• first_rows: Deprecated in 9i, but maintained for backward compatibility. The optimizer

will attempt to find an execution plan to return the first row of a result set as rapidly as

possible. There are several high-level constraints built into the code. For example, one

constraint appears to be avoid merge joins and hash joins unless the alternative is a

nested loop with a full tablescan on the inner (second) table. The rules tend to push the

optimizer into using indexed access paths, which are occasionally very inappropriate

access paths. An example of and workaround to this particular issue can be found in the

script first_rows.sql in the online code suite for this chapter, available from the Apress

web site (www.apress.com) or from the author’s web site (www.jlcomp.demon.co.uk).

There are two other options for the optimizer_mode (even in 10g): rule and choose. This

book is going to ignore rule based optimization (RBO) completely because it has been deprecated

for years and was finally desupported in 10g (even though some of the internal SQL still uses

the /*+ rule */ hint).

As for the choose option, this gave the optimizer a run-time choice between rule based

optimization and all_rows. Since I am ignoring rule based optimization, nothing more needs

to be said about choose mode. I will just mention that in 10g, if you use the Database Configuration

Assistant (DBCA) to build a database, or call catproc.sql during a manual creation, you will

automatically install a job (created by the catmwin.sql script and visible in view

dba_scheduler_jobs) that will, every 24 hours, generate statistics on any tables with missing or

stale statistics. So, if you set the optimizer_mode to choose, it will probably result in all_rows

optimization, but you may find that any tables that missed the most recent pass of statistics

generation will then be subject to dynamic sampling. This is because the default value in 10g

for the parameter optimizer_dynamic_sampling is 2 (which means use dynamic sampling on

any table without statistics), rather than 1, as it was in 9i.

Another parameter associated with the optimizer_mode is optimizer_goal. There seems to

be no difference between these two parameters as far as optimization strategies go, although

the optimizer_goal can only be set dynamically within a session, and is not available in the

spfile (init.ora).

So What Is the Cost?
One of the commonest questions about the CBO on the Internet is What does the cost represent?

This is usually followed by comments like According to explain plan, the cost of doing a hash

join for this query is 7 million and the cost of a nested loop is 42—but the hash join completes in

3 seconds and the nested loop takes 14 hours.

The answer is simple: the cost represents (and has always represented) the optimizer’s

best estimate of the time it will take to execute the statement. But how can this be true when

people can see oddities like this hash join/nested loop join example? The answer can usually

be found in that good old acronym GIGO: Garbage In, Garbage Out.

The CBO makes errors for six main reasons:

• Some inappropriate assumptions are built into the cost model.

• The relevant statistics about the data distribution are available, but misleading.

• The relevant statistics about the data distribution are not available.

C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ? 3

• The performance characteristics of the hardware are not known.

• The current workload is not known.

• There are bugs in the code.

We shall examine these issues, and the evolution of the optimizer to address them, in the

course of the book. However, given the impact they make, I shall just mention briefly some

changes to the CBO that have appeared in recent versions of Oracle (and may appear in future

versions) that make it much harder to explain what the optimizer is up to.

In 8i, the optimizer simply counted the number of requests it expected to make to the I/O

subsystem. The execution plan that required the smallest number of requests was the one that

was chosen. This did not account for the fact that a tablescan might require vastly more CPU

than an indexed access path. It did not account for the fact that a 128-block read might actually

take more time than a single-block read. It did not account for the fact that a notional 128-block

read might actually turn into, say, 25 separate read requests because a randomly scattered

subset of the required blocks were already in the Oracle buffer. It did not account for the fact

that an I/O request might be satisfied from an intervening cache rather than requiring an

actual physical disk read.

In 9i, the optimizer introduced a feature referred to as CPU costing. You can store typical

response times for single-block and multiblock I/O requests in the database along with an

indicator of the typical size of a multiblock request, and the optimizer will factor these values

into the cost equation. The optimizer will also convert a count of CPU operations (e.g., compare

date column with constant) into CPU time, and factor that into the equation as well. These

refinements ensure that the optimizer has a better estimate of the cost of tablescans and tends

to produce more sensible execution plans and fewer anomalies like the hash join/nested loop

join noted earlier in this section.

In 10g, an offline optimizer appeared. This allows you to generate and store critical statistical

information (in the form of a profile) that helps the online optimizer deal with the problems of

correlated data distributions. In effect, you can enhance a query by adding a hint that says, “At this

point, you will have 15 times as much data as you expect.” Both 9i and 10g collect cache statistics

at the object level and, looking to the future, 10g has a couple of hidden parameters that look

as if they will enable high-precision, cache-aware calculations to be used. If (or when) this

feature goes into production, the optimizer may be able to produce plans that better reflect the

number of actual I/O requests needed based on recent cache success.

Moreover, both 9i and 10g collect run-time statistics in the views v$sql_plan_statistics

and v$sql_plan_statistics_all. These statistics could, in theory, be fed back to the optimizer

to give it a second chance at optimizing a query if the actual statistics differ too much from the

assumptions made by the optimizer.

One day, perhaps within the next couple of minor releases, you will be able to look at the

cost of a query and convert it confidently into an approximate run time, because the optimizer

will have produced exactly the right execution plan for your data, on that machine, at that precise

moment in time. (Of course, an optimizer that changes its mind every five minutes because of

the ongoing activity could be more of a threat than a benefit—I think I might favor predictability

and stability to intermittently failing perfection.)

In the meantime, why am I so sure that cost is supposed to equal time? Check the 9.2

Performance Guide and Reference (Part A96533), pages 9-22:

4 C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ?

According to the CPU costing model:

 Cost = (

 #SRds * sreadtim +

 #MRds * mreadtim +

 #CPUCycles / cpuspeed

) / sreadtim

where

 #SRDs - number of single block reads

 #MRDs - number of multi block reads

 #CPUCycles - number of CPU Cycles

 sreadtim - single block read time

 mreadtim - multi block read time

 cpuspeed - CPU cycles per second

Translated, this says the following:

The cost is the time spent on single-block reads, plus the time spent on multiblock reads,
plus the CPU time required, all divided by the time it takes to do a single-block read.
Which means the cost is the total predicted execution time for the statement, expressed
in units of the single-block read time.

REPORTING CPUSPEED

Although the manual indicates that the cpuspeed is reported in cycles per second, there are two possible

errors in the statement.

The simple error is that the values that appear suggest the unit of measure is supposed to be millions of

cycles per second (i.e., CPU speed in MHz). Even then, the number always seems to fall short of expectations—in

my case by a factor of anything between 5 and 30 on various machines I’ve tested.

The more subtle error then is that the value may actually be a measure of millions of standardized oracle

operations per second, where a “standardized oracle operation” is some special subroutine designed to burn

CPU. (A 10053 trace file from 10.2 offers corroborative evidence for this.)

Whether the number represents cycles per second or operations per second, the difference is only a

simple scaling factor. The mechanism involved in using the cpuspeed is unchanged.

Why does Oracle choose such an odd time unit for the cost, rather than simply the number

of centiseconds? I think it’s purely for backward compatibility. The cost under 8i (and 9i before

you enabled full CPU costing) was just the count of the number of I/O requests, with no distinction

made between single-block and multiblock I/Os. So, for backward compatibility, if the new

code reports the time in units of the single-block read time, the number produced for the cost

for a typical (lightweight, index-based) OLTP query will not change much as you upgrade from

8i to 9i.

A little extra thought about this formula will also tell you that when you enable CPU costing,

the cost of a tablescan will tend to go up by a factor that is roughly (mreadtim / sreadtim). So 9i

with CPU costing will tend to favor indexed access paths a little more than 8i did because 9i

C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ? 5

recognizes (correctly) that multiblock reads could take longer than single-block reads. If you

are planning to upgrade from 8i to 9i (or 8i to 10g), make sure you enable CPU costing from day

one of your regression testing—there will be some surprises waiting for you.

A final consideration when examining this formula is that there is no explicit mention of

any components relating to the time spent on the I/O that can result from merge joins, hash

joins, or sorting. In all three cases, Oracle uses direct path writes and reads with sizes that

usually have nothing to do with the normal multiblock read size—so neither mreadtim nor

sreadtim would seem to be entirely appropriate.

Transformation and Costing
There is an important aspect of optimization that is often overlooked and can easily lead to

confusion, especially as you work through different versions of Oracle. Before doing any cost

calculation, Oracle may transform your SQL into an equivalent statement—possibly one that

isn’t even legally acceptable SQL—and then work out the cost for that equivalent statement.

Depending on the version of Oracle, there are transformations that (a) cannot be done, (b)

are always done if possible, and (c) are done, costed, and discarded. Consider, for example, the

following fragments of SQL (the full script, view_merge_01.sql, is available with the online code

suite for this chapter):

create or replace view avg_val_view

as

select

 id_par,

 avg(val) avg_val_t1

from t2

group by

 id_par

;

select

 t1.vc1,

 avg_val_t1

from

 t1,

 avg_val_view

where

 t1.vc2 = lpad(18,32)

and avg_val_view.id_par = t1.id_par

;

You will note that avg_val_view is an aggregate view of the table t2. The query then joins

t1 to t2 on the column that is driving the aggregation. In this case, Oracle could use one of two

possible mechanisms to produce the correct result set: instantiate the aggregate view and then

join the view to table t1, or merge the view definition into the query and transform it. From a 9i

system, here are the two possible execution plans:

6 C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ?

Execution Plan (9.2.0.6 instantiated view)

--

SELECT STATEMENT Optimizer=CHOOSE (Cost=15 Card=1 Bytes=95)

 HASH JOIN (Cost=15 Card=1 Bytes=95)

 TABLE ACCESS (FULL) OF 'T1' (Cost=2 Card=1 Bytes=69)

 VIEW OF 'AVG_VAL_VIEW' (Cost=12 Card=32 Bytes=832)

 SORT (GROUP BY) (Cost=12 Card=32 Bytes=224)

 TABLE ACCESS (FULL) OF 'T2' (Cost=5 Card=1024 Bytes=7168)

Execution Plan (9.2.0.6 merged view)

--

SELECT STATEMENT Optimizer=CHOOSE (Cost=14 Card=23 Bytes=1909)

 SORT (GROUP BY) (Cost=14 Card=23 Bytes=1909)

 HASH JOIN (Cost=8 Card=32 Bytes=2656)

 TABLE ACCESS (FULL) OF 'T1' (Cost=2 Card=1 Bytes=76)

 TABLE ACCESS (FULL) OF 'T2' (Cost=5 Card=1024 Bytes=7168)

As you can see from the execution plans, my example allows Oracle to aggregate table t2

and then join it to t1, but it also allows Oracle to join the two tables and then do the aggrega-

tion. The “equivalent” code for the merged view would look something like this:

select

 t1.vc1,

 avg(t2.val)

from

 t1, t2

where

 t1.vc2 = lpad(18,32)

and t2.id_par = t1.id_par

group by

 t1.vc1, t1.id_par

;

So which of the two paths is better and which execution plan will the optimizer choose?

The answer to the first part of the question depends on the data distribution.

• If there is an efficient way to get from t1 to t2, and if there are only a couple of rows in t2

for each row in t1, and if the extra volume of data added to each row by t2 is small, then

joining before aggregating will probably be the better idea.

• If there is no efficient way to get from t1 to t2, and there are lots of rows in t2 for each

row in t1, and the extra volume of data added to each row by t2 is large, then aggregating

before joining will probably be the better idea.

• I can tell you about the extremes that make the options possible, but I can’t give you an

immediate answer about all the possible variations in between. But the optimizer can

make a pretty good estimate.

C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ? 7

The answer to the second part of the question depends on your version of Oracle. If you

are still running 8i, then Oracle will aggregate the view and then perform the join—without

considering the alternative. If you are running 9i, Oracle will open up the view, join, and then

aggregate—without considering the alternative. If you are running 10g, Oracle will work out the

cost of both alternatives separately, and take the cheaper one. You can see this if you rerun

script view_merge_01.sql, but set event 10053 (which will be discussed in later chapters) to

generate a trace file of the optimizer’s cost calculations.

EVOLUTION OF OPTIMIZATION CODE

As you go through the versions of Oracle, you will notice many examples of mechanisms that can be enabled

or disabled at the system or session level by hidden parameters; there are also many mechanisms that can be

enabled or disabled by hints at the SQL level.

A common evolutionary path in the optimizer code seems to be the following: hidden by undocumented

parameter and disabled in the first release; silently enabled but not costed in the second release; enabled and

costed in the third release.

In this specific example, the option to open up the aggregate view and merge it into the

rest of the query depends on the hidden parameter _complex_view_merging, which defaults to

false in 8i, but defaults to true from 9i onwards. You can force 8i to do complex view merging

by changing this parameter—although you may find some cases where you also need to use

the merge() hint to make merging happen. You could also stop 9i and 10g from doing complex

view merging by changing the value of this parameter, but it might be more sensible to use the

no_merge() hint selectively—which is what I did to get the first of the two execution plans

shown previously.

There are many features available to the optimizer to manipulate your query before opti-

mizing it—predicate pushing, subquery unnesting, and star transformation (perhaps the

most dramatic example of query transformation) have been around for a long time. Predicate

generation through transitive closure has also been around years, and predicate generation

from constraints has come and gone across the versions. All these possibilities (not to mention

the explicit query rewrite feature), and perhaps some others that I haven’t even noticed yet,

make it much harder to determine precisely what is going on with complex SQL unless you

examine the details very closely—ultimately wading through a 10053 trace.

Fortunately, though, you won’t often need to get down to this extreme, as the detail offered by

explain plan is often enough to tell you that a transformation has occurred. A couple of hints,

or a check of the optimizer-related parameters, will usually tell you whether a transformation

is mandatory or optional, costed or uncosted, and how much control you have over it.

WYSIWYG?
One more problem faces you as you struggle to unravel the details of how the cost based optimizer

works: what you see is not always what you get.

There are three different layers of operational complexity:

8 C H A P T E R 1 ■ W H A T D O Y O U M E A N B Y C O S T ?

• First, the execution plan tells you what the optimizer thinks is going to happen at run

time, and produces a cost based on this model.

• Second, the execution engine starts up and executes the model dictated by the optimizer—

but the actual mechanism is not always identical to the model (alternatively, the model

is not a good description of what actually happens).

• Finally, there are cases where the resources required to execute the model vary dramat-

ically with the way in which the incoming data happens to be distributed.

In other words, the optimizer’s execution plan may not be exactly the run-time execution

path, and the speed of the run-time execution path may be affected by an unlucky choice of

data. You will see examples of this in Chapter 9.

Summary
The main purpose of this very short chapter is to warn you that there are no quick and snappy

answers to questions like Why did Oracle do X? At the very least, you have three optimizer

modes and two (possibly three) major versions of Oracle to check before you start to formulate

an answer.

Oracle can do all sorts of transformations to your SQL before optimizing it. This means

that an execution plan you were expecting to see may have been eliminated by a transforma-

tion before the optimizer started to do any costing.

On the positive side, though, the basic arithmetic is always the same. Cunning refinements,

little tweaks, new features, and dirty tricks are thrown in to confuse the issue—but 95% of

everything that the optimizer does can be described and explained reasonably accurately in

just a few chapters.

Test Cases
The files in the subdirectory for this chapter are shown in Table 1-1.

Table 1-1. Chapter 1 Test Cases

Script Comments

first_rows.sql Demonstration for the problems of first_rows optimization

view_merge_01.sql Demonstration of the changes in complex view merging

setenv.sql Sets the standardized test environment for SQL*Plus

9

■ ■ ■

C H A P T E R 2

Tablescans

At first sight, you might think that there couldn’t be a lot to say about tablescans, but you may

be in for a surprise. Since the cost calculations for tablescans are nice and simple, I thought

I’d use them in this early chapter to demonstrate the four different strategies for cost based

optimization that have evolved over the years, briefly outlined here:

• Traditional: Simple counting of read requests

• System statistics (1): Accounting for size and time of read requests

• System statistics (2): Accounting for CPU costs, and size and time of read requests

• System statistics (3): Accounting for caching, CPU costs, and size and time of read requests

The traditional method appeared in Oracle 7, and has been enhanced continuously since.

Some of the more serious drawbacks, particularly the failure to account for caching and variable

I/O costs, were partially addressed in 8i. I will be saying more about those fixes in Chapter 4.

The use of system statistics (CPU costing) appeared in 9i, and is still undergoing enhance-

ment in 10g. The “normal” variant of system statistics is number 2 in our list—accounting for

CPU costs and variable I/O costs.

The option to disable just the CPU component of system statistics is available through an

undocumented parameter whose effects seem to vary with version of Oracle. And the potential

for including caching effects appears in 10g but has to be enabled through an undocumented

parameter, and is therefore an assumption I am making about future directions, not a fact.

As you can see, the Oracle kernel code has been extended to become more aware of the

environment that it is running in, which should make it better able to produce the most appro-

priate execution plan for the moment that the query is optimized.

Once you’ve worked through all four variations that Oracle has to offer, you might think

you know all there is to know about the different methods of calculating the costs of a tablescan.

But you’ve only just begun—remember that an index fast full scan is really just a variant on the

tablescan idea; think about the fact that there may be some anomalies introduced by automatic

segment space management (ASSM); and consider that tablescans can be performed using

parallel execution, and might involve partitioned tables.

Getting Started
Before running any tests, you will need to do a little preparation work to be able to examine the

details of the execution plans that the optimizer is going to produce.

10 C H A P T E R 2 ■ T A B L E S C A N S

On my 9i system I’ve used the script $ORACLE_HOME/rdbms/admin/utlxplan.sql to build a

plan_table, but I’ve modified the standard script to create the table as a global temporary

table with the option on commit preserve rows, owned by the system account. Then I’ve granted

all privileges on this table to public, and given it a public synonym. (Oracle 10g has also adopted

this strategy.)

Oracle supplies a couple of scripts ($ORACLE_HOME/rdbms/admin/utlxplp.sql and utlxpls.sql)

to ensure that you can produce a plan that probably includes all the latest features, but I’ve also

prepared my own scripts for reporting execution plans: plan_run81.sql and plan_run92.sql,

which are available in the online code suite.

In 9i you may also need to execute the script dbmsutil.sql to create the package dbms_xplan

that Oracle calls to produce a formatted execution plan. You may want to get familiar with

Oracle’s scripts simply for the sake of consistency of appearance.

■Note Oracle Corp. has been supplying scripts for standardizing the presentation of execution plans for a

long time. In 9i, these scripts changed from complex SQL statements to a simple call to a packaged procedure.

In 10g, the packaged procedure was enhanced in several ways to allow you to report an execution plan for a

single statement still in the view v$sql, or even to report a set of plans for all the statements returned by a

query made against either v$sql or the Automatic Workload Repository (AWR) tables. Keep an eye on the

script dbmsutl.sql and the dbms_xplan package if you want to keep abreast of the latest developments.

It’s also critical to work on a stable platform when investigating the optimizer. In my case,

the most important features of my starting test environment are

• Block size 8KB

• db_file_multiblock_read_count = 8

• Locally managed tablespaces

• Uniform extents of size 1MB

• Freelist space management—not automatic segment space management

• optimizer_mode = all_rows

• System statistics (cpu_costing) initially disabled

There are various parameters that I might then adjust for different test cases, but I always

start with this baseline.

So let’s build a test case—and for this experiment we will go back briefly to 8i. The full

script is tablescan_01.sql in the online code suite:

execute dbms_random.seed(0)

create table t1

pctfree 99

pctused 1

C H A P T E R 2 ■ T A B L E S C A N S 11

as

select

 rownum id,

 trunc(100 * dbms_random.normal) val,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 10000

;

With this script, I’ve created a table of 10,000 rows that also spans 10,000 blocks because of

the unusual value I’ve chosen for pctfree. (It’s a trick I often use in test cases to waste lots of

space without generating lots of data—occasionally it causes surprises because one row per

block is a very special boundary condition.) Using view all_objects if you are running 8i with

Java installed is a convenient way of getting about 30,000 rows in a scratch table without resorting

to cunning tricks.

REPEATABLE RANDOM DATA

Oracle Corp. supplies a lot of useful packages that rarely see the light of day. The dbms_random package is

one of these. It includes several procedures for generating pseudo-random data, including a procedure for

generating uniform random numbers, a procedure for generating normally distributed random numbers, and

a package for creating random strings of a specified size. I frequently use the dbms_random package as a

quick, reproducible method for generating test data that approximates to a particular type of production situation.

After generating statistics on the table, I just enable autotrace and run a simple query.

Since there are no indexes on the table, Oracle has to perform a tablescan, and under Oracle 8i

you will get an execution plan like this one:

select max(val)

from t1

;

Execution Plan (8.1.7.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1518 Card=1 Bytes=4)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=1518 Card=10000 Bytes=40000)

From autotrace we get three critical numbers on most lines of the execution plan—the

cumulative cost for a line (Cost=), the number of rows that each line of the plan will generate

(Card=), and the total volume of data that each line will generate (Bytes=).

In this case, we can see that the max() function will return just one row of 4 bytes, at a cost

of 1,518 (the result will be slightly different in 9i and 10g); but note that most (in fact all) of the

www.allitebooks.com

http://www.allitebooks.org

12 C H A P T E R 2 ■ T A B L E S C A N S

cost comes from the full tablescan in line 2, which will pass 10,000 rows and 40,000 bytes up to

the sort (aggregate) line, and the sort (aggregate) in line 1 seems to have been free of charge.

Before investigating the arithmetic, let’s see how we can persuade Oracle to reevaluate the

cost: let’s change the size of the db_file_multiblock_read_count.

alter session set db_file_multiblock_read_count = 16;

When we double the value of this parameter, we find the cost of the tablescan drops—but

doesn’t halve. We can automate the process of recording cost against size of

db_file_multiblock_read_count, and Table 2-1 shows a few results this will produce (still from

Oracle 8i). Note especially the column headed “adjusted dbf_mbrc”; I have calculated this as

(10,000 / cost), that is, the number of blocks in my table divided by the calculated cost of scanning

the table.

The adjusted dbf_mbrc is significant, because a little further experimentation shows that

the cost of a tablescan when using the traditional costing methods is (blocks below high water

mark / adjusted dbf_mbrc).

If you do a tablescan of a 23,729 block table with a db_file_multiblock_read_count of 32,

then the cost of the tablescan will be reported as ceil(23,729 / 16.39); if you do a tablescan of

a 99-block table with a db_file_multiblock_read_count of 64, then the cost of the tablescan will

be ceil(99 / 25.84).

There will be small rounding errors, of course—if you want a more accurate set of figures,

create a very large table (or fake it by using the procedure dbms_stats.set_table_stats to claim

that your test table is 128,000,000 blocks).

It doesn’t matter what your standard block size is (although, as you will see, you have to

fiddle with the formula when you start working with nonstandard block sizes), there is just one

reference set of values that Oracle uses to calculate the cost of a tablescan. The online code

suite includes a script called calc_mbrc.sql that can generate the full set of values for the

adjusted dbf_mbrc. If you run this script, you will find that there is a point beyond which

the adjusted dbf_mbrc will not change. When Oracle starts up, it negotiates with the operating

system to find the largest physical read size your operating system will allow, and silently uses

that to limit whatever value you set for the db_file_multiblock_read_count.

Table 2-1. Effects of Changing the Multiblock Read Count

db_file_multiblock_read_count Cost Adjusted dbf_mbrc

4 2,396 4.17

8 1,518 6.59

16 962 10.40

32 610 16.39

64 387 25.84

128 245 40.82

C H A P T E R 2 ■ T A B L E S C A N S 13

HIGH WATER MARK

In general, when a table or index segment is first created, space for that segment will be preallocated from a

data file but very little of the space will be formatted for use. As data arrives, blocks will be formatted a few at

a time.

In the simplest setup, Oracle would format “the next five” blocks from the preallocated space as the need

arose, and the object’s high water mark (HWM) would be adjusted to show how many blocks had been formatted

and were available for use.

With the arrival of ASSM in 9i, Oracle formats groups of adjacent blocks (typically 16, it seems) at a time.

The high water mark still identifies the highest formatted block in the segment, but ASSM randomizes the allocation

slightly, so that unformatted holes (16 blocks, or multiples thereof) can appear in the middle of the object.

ASSM also allocates one or two bitmap space management blocks per extent. So the object is larger,

and the cost of a tablescan is pushed upwards—for large objects the difference is not huge, but there are

other side effects to consider, as you will see in later chapters.

Even in this very simple case, it is important to recognize that there can be a difference

between the optimizer’s calculations and the run-time activity. The adjusted dbf_mbrc is

used purely for calculating the cost. At run time Oracle will try to use the value of the

db_file_multiblock_read_count parameter to perform a tablescan—although odd glitches

such as extent boundaries blocks already being cached and therefore not subject to being read

usually mean that a serial tablescan will do a fairly random selection of read sizes from one

through to the full db_file_multiblock_read_count. (This typical run-time variation is prob-

ably the rationale behind the way the adjusted dbf_mbrc gets more pessimistic as the

db_file_multiblock_read_count gets larger and larger.)

Before moving on, we should take a look at a slightly more complex query:

select

 val,

 count(*)

from

 t1

group by

 val

;

Execution Plan (8.1.7.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1540 Card=582 Bytes=2328)

 1 0 SORT (GROUP BY) (Cost=1540 Card=582 Bytes=2328)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=1518 Card=10000 Bytes=40000)

Note in this case that the cost of the tablescan is unchanged (1,518 in line 2), but the total

cost of the query is 1,540 (line 1)—the extra 22 must be due to the cost of doing the sort (group

by). Whether this is a reasonable estimate or not remains to be seen—but it does seem a little

expensive for sorting just 40KB of data.

14 C H A P T E R 2 ■ T A B L E S C A N S

■Note We will examine sort costs in detail in Chapter 13, but one detail you might note now is that the sort

(aggregate) reported in the simpler query doesn’t really do any sorting, which is why the marginal cost on

the sort (aggregate) line was zero. Oracle simply checks each incoming row against the current maximum.

(This concept has been enhanced to produce the hash (group by) in 10g Release 2.) There are lots of shortcuts

that the run-time engine takes that aren’t necessarily reflected perfectly in execution plans.

The other important detail to pick up from this plan is the final cardinality: the optimizer

has estimated that there will be 582 rows returned by this query. In fact, this is exactly right.

Given the simplicity of the query, the optimizer could use one of the stored statistics for the val

column (user_tab_columns.num_distinct) to produce the right answer. It only takes a slightly

more complex query and the cardinality starts to drift from the correct answer though. As you

will see in Chapter 10, it is very important that the optimizer gets an accurate estimate of the

cardinality every step of the way.

Onwards and Upwards
We now move on to 9i, and the important enhancements made to the optimizer. Before we

look at the most critical enhancements, though, this is a good moment to cast an eye over the

multiple block size feature of 9i and repeat our test case using different block sizes.

Effects of Block Sizes

We start by retesting our baseline on the newer version of Oracle—still using a tablespace built

with an 8KB block size—and note that the cost has gone up from 1,518 to 1,519. This is a minor

variation in 9i controlled by parameter _tablescan_cost_plus_one, which is set to false in 8i

and true in 9i. A tablescan in 9i is automatically a tiny bit more expensive than the equivalent

tablescan in 8i (all other things being equal).

This is the type of minor tweak that appears surprisingly frequently in Oracle, and makes

it very difficult to produce any sort of documentation about the optimizer that is both concise

and complete. In this case, the change may represent the requirement for the necessary access

to the table’s segment header block at the start of a tablescan; alternatively it may simply be

one of several tricks built into the optimizer to bias it towards using indexed access paths on

very small tables.

After spotting the plus 1 in the cost, we can try a few variations in block sizes

(tablescan_01a.sql and tablescan_01b.sql in the online code suite) and see what happens

when we fix the db_file_multiblock_read_count at 8 and leave CPU costing disabled. The three

figures for each block size shown in Table 2-2 are

• The cost of a tablescan on a fixed number of blocks (10,000) as the block size changes

• The adjusted dbf_mbrc (10,000 / (cost – 1)) for each of the different block sizes

• The cost of a tablescan when the size (in MB) of the table is fixed and the block size changes

C H A P T E R 2 ■ T A B L E S C A N S 15

We can draw two significant conclusions from this table. First, check the values for the

adjusted dbf_mbrc column—where have you seen those figures (plus or minus small rounding

errors) before?

• For the 2KB row, the value of 16.39 is the value we got in our first test with a

db_file_multiblock_read_count of 32.

Note: 2KB * 32 = 64KB

• For the 4KB row, the value of 10.40 is the value we got in our first test with a

db_file_multiblock_read_count of 16.

Note: 4KB * 16 = 64KB

• For the 16KB row, the value of 4.17 is the value we got in our first test with a

db_file_multiblock_read_count of 4.

Note: 16KB * 4 = 64KB

That 64KB that keeps on appearing is significant—it’s 8KB * 8, our standard database block

size multiplied by our setting of db_file_multiblock_read_count. So we infer that Oracle

handles nonstandard block sizes by restating the db_file_multiblock_read_count as a directive

about the read size based on the standard block size. For example, if the default block size is

8KB and the table to be scanned is in a tablespace with a 4KB block size, then the optimizer

effectively doubles the db_file_multiblock_read_count to keep the read size constant before

doing the normal cost calculation.

Moreover, if you generate extended trace files (event 10046) while doing this experiment

on a tablespace with a 4KB block size, you find that the same adjustment occurs at run time. If

you had set db_file_multiblock_read_count to 8 with a default block size of 8KB, you would

find multiblock reads of 16 blocks for tablescans in a tablespace using 4KB blocks.

Our second conclusion comes from examining the cost of a tablescan where we keep the

physical size of the data segment constant. Notice that the cost of the tablescan decreases as

the block size increases. If you move an object from one tablespace to another with a different

block size, the cost of scanning it with multiblock reads changes significantly—you may find

that a surprising number of SQL statements change their execution plan as a result, and the

change may not be for the better.

Table 2-2. How the Block Size Affects the Cost

Block Size Cost of 10,000 Block Scans Adjusted dbf_mbrc Cost for 80MB Scan

2KB 611 16.39 2,439

4KB 963 10.40 1,925

8KB 1,519 6.59 1,519

8KB ASSM 1,540 n/a 1,540

16KB 2,397 4.17 1,199

16 C H A P T E R 2 ■ T A B L E S C A N S

TUNING BY CHANGING BLOCK SIZES

Be very cautious with the option for using different block sizes for different objects—the feature was intro-

duced to support transportable tablespaces, not as a tuning mechanism.

You may be able to find a few special cases where you can get a positive benefit by changing an object

from one block size to another; but in general you may find that a few side effects due to the optimizer changing its

arithmetic may outweigh the perceived benefits of your chosen block size.

One final observation—I have included the original results for the 8KB block size in the

table; but I have also listed the costs when the table was in a tablespace that used ASSM. Notice

that the cost of a tablescan has increased by about 1.5%. Every extent in my table had a couple

of blocks taken out for space management bitmaps—2 blocks out of 128 since my extents were

1MB; the extra cost is largely due to the effect of those blocks on the high water mark of the

table. Again, if you are advised to move an object into an ASSM tablespace for performance

reasons (specifically to avoid contention on inserts), be just a little cautious—this is just one of

the irritating little side effects of ASSM.

CPU Costing

One of the most serious defects of the optimizer prior to 9i was its assumption that single-block

reads and multiblock reads were equally cost effective. This assumption is flawed on two counts.

First, multiblock reads often take longer to complete than single-block reads (especially on

systems with too few disks, configured with too small a stripe size). Second, a tablescan can use

a surprising amount of CPU as each row is tested against some predicate.

In 9i, both these flaws are addressed through system statistics. You can collect system

statistics over representative periods of time, or you could simply calibrate your hardware (at

least the I/O subsystem) for absolute performance figures and then write system statistics into

the database.

For example, you could issue the following two statements at 9:00 a.m. and noon respectively

one Monday morning:

execute dbms_stats.gather_system_stats('start')

execute dbms_stats.gather_system_stats('stop')

The 'start' option takes a starting snapshot of various figures from v$filestat (actually

the underlying x$ including some columns that are not exposed in v$filestat) and v$sysstat;

the 'stop' takes a second snapshot, works out various statistics about disk and CPU activity

over that three hours, and records them in the database. The nature of the data collected and

stored is version dependent—and is probably still subject to change in 10g, but you should find

results in table sys.aux_stats$ that look something like the following from 9i (10g has a few extra

rows):

select

 pname, pval1

from

 sys.aux_stats$

C H A P T E R 2 ■ T A B L E S C A N S 17

where

 sname = 'SYSSTATS_MAIN'

;

PNAME PVAL1

----------- ----------

CPUSPEED 559

SREADTIM 1.299

MREADTIM 10.204

MBRC 6

MAXTHR 13938448

SLAVETHR 244736

Accessing the values by querying the base table is not the approved method, of course, and

Oracle supplies a PL/SQL API to query, set, and delete system statistics. For example, we can

set the basic four system statistics with code like the following, which comes from script

set_system_stats.sql in the online code suite:

begin

 dbms_stats.set_system_stats('CPUSPEED',500);

 dbms_stats.set_system_stats('SREADTIM',5.0);

 dbms_stats.set_system_stats('MREADTIM',30.0);

 dbms_stats.set_system_stats('MBRC',12);

end;

/

alter system flush shared_pool;

I’ve included the flushing of the shared pool in this code fragment as a reminder that when

you change the system statistics, existing cursors are not invalidated (as they would be for

dependent cursors when you gather statistics on a table or index). You have to flush the shared

pool if you want to make sure that existing cursors are reoptimized for the new system statistics.

■Note If you want to use a low-privilege account to collect system statistics, you will need to grant the role

gather_system_statistics to the account. This role is defined in $ORACLE_HOME/rdbms/admin/

dbmsstat.sql. There was a bug in many versions of 9.2 that would result in a nonfatal Oracle error if an

account tried to modify the system statistics more than once in a session.

The figures in my anonymous PL/SQL block tell Oracle that

• A single CPU on my system can perform 500,000,000 standard operations per second.

• The average single-block read time is 5 milliseconds.

• The average multiblock read time is 30 milliseconds.

• The typical multiblock read size is 12 blocks.

18 C H A P T E R 2 ■ T A B L E S C A N S

The maxthr and slavethr figures relate to throughput for parallel execution slaves. I believe

that the figures somehow control the maximum degree of parallelism that any given query

may operate at by recording the maximum rate at which slaves have historically been able to

operate—but I have not been able to verify this. These two statistics are allowed to have the

value –1, but if any of the others end up with the value –1, then the CPU costing algorithms will

not be invoked. (The situation changes with 10g, where there are two sets of statistics—one of

which is the noworkload set. If the main statistics are invalid, Oracle will fall back to using the

noworkload statistics.)

SYSTEM STATISTICS 10.2

Although the manuals state that the CPUSPEED figure represents the CPU speed in cycles per second, you will

probably find that it always falls short of the real CPU speed. Christian Antognini has suggested that the measure

represents the number of times per second that Oracle can perform some calibrating operation on your platform. The

10053 trace file from 10g release 2 (10.2.0.1) includes a section on system statistics that corroborates this;

for example, reporting my earlier sample set as follows (note the loss of precision in reporting the read times):

Using WORKLOAD Stats

CPUSPEED: 559 million instructions/sec

SREADTIM: 1 milliseconds

MREADTIM: 10 milliseconds

MBRC: 6.000000 blocks

MAXTHR: 13938448 bytes/sec

SLAVETHR: 244736 bytes/sec

Of course, the CPUSPEED is just a number, and the optimizer is just doing arithmetic with that number, what-

ever it represents—but if you have a proper understanding of where the number comes from, you may be a

little more cautious about fiddling with it.

So how does the optimizer use these statistics? Modify the original test case to include the

system statistics shown previously and run it under 9i with the db_file_multiblock_read_count set

to 4, 8, 16, and 32 in turn (this test is available as script tablescan_02.sql in the online code

suite). Autotrace reported the cost of the query as 5,031 in the first three cases. Unfortunately,

the cost in the case of the 32-block read size was 5,032, a small but unexpected variation. Under

10g, the costs were one unit less across the board. The rules about rounding, truncating, and so

on are slightly different across the versions—a common problem that increases the difficulty of

working out what’s really happening.

So what do we infer from this new test? Apart from the tiny anomaly with the 32 block

reads, the cost no longer changes with the value of db_file_multiblock_read_count.

The first detail to worry about is that autotrace is not up to doing a thorough job. We need

the complete description of the execution plan to help us, so we need a proper explain plan

script (see plan_run92.sql in the online code suite). The columns we are particularly interested

in from the latest version of the plan_table are cpu_cost, io_cost, and temp_space (this last will

only be used for sorts and hashes that are expected to overflow to disk). When we report a more

complete execution plan, we see the following:

C H A P T E R 2 ■ T A B L E S C A N S 19

SELECT STATEMENT (all_rows) Cost(5031,1,4) New(5001,72914400,0)

 SORT (aggregate)

 TABLE ACCESS (analyzed) T1 (full) Cost(5031,10000,40000) New(5001,72914400,0)

The three figures reported as Cost(, ,) are equivalent to the original cost, cardinality,

and bytes reported by autotrace. The three figures reported as New (, ,) are the cpu_cost,

io_cost, and temp_space of the new cpu_costing algorithm; and the final cost is io_cost +

(scaled) cpu_cost.

If we apply the formula quoted in Chapter 1, we can reverse engineer the arithmetic that

the optimizer is doing:

Cost = (

 #SRds * sreadtim +

 #MRds * mreadtim +

 #CPUCycles / cpuspeed

) / sreadtim

By dividing the sreadtim all the way through the equation, we can rearrange this to read

as follows:

Cost = (

 #SRds +

 #MRds * mreadtim / sreadtim +

 #CPUCycles / (cpuspeed * sreadtim)

)

Since we are doing a tablescan, we have

• SRds = 0 (single-block reads)

• MRds = 10,000 / 12 (Remember our code earlier claimed the size of a multiblock read was 12.)

The I/O Bit

We’ll worry about the CPU component in a little while, but slotting in the 30 milliseconds

and 5 milliseconds that we set for the mreadtim and sreadtim, the formula gives us an I/O

cost of (10,000 / 12) * (30 / 5) = 5,000. And, of course, we have to remember that

_tablescan_cost_plus_one is set to true, and we get to our target 5,001.

So we can see that when system statistics are active, the I/O cost of a tablescan uses the

actual value of MBRC instead of an adjusted db_file_multiblock_read_count, and then caters to

the difference in speed between a single-block read and a multiblock read by multiplying up by

(recorded multiblock read time / recorded single-block read time).

If you have not collected system statistics in 10g, you will find that the optimizer makes use

of three other statistics from the aux_stats$ table:

PNAME PVAL1

--------------- ----------

CPUSPEEDNW 913.641 -- speed in millions of operations per second

IOSEEKTIM 10 -- disk seek time in milliseconds

IOTFRSPEED 4096 -- disk transfer time in bytes per millisecond

20 C H A P T E R 2 ■ T A B L E S C A N S

If the optimizer uses these noworkload statistics, it takes the preceding values, the

db_block_size, and the db_file_multiblock_read_count, and synthesizes some values for

the sreadtim, mreadtim, and MBRC.

• MBRC is set to the actual value of db_file_multiblock_read_count.

• sreadtim is set to ioseektim + db_block_size/iotrfrspeed.

• mreadtim is set to ioseektim + db_file_multiblock_read_count * db_block_size/

iotftspeed.

In other words, a read request takes one seek and then however many milliseconds of

transfer to shift the volume of data off disk. Using the preceding example with an 8KB block

size and a multiblock read of 8, the optimizer would set the sreadtim to 10 + 8192/4096 = 12 ms,

and mreadtim to 10 + 8 * 8192/4096 = 26 ms.

Once these values have been synthesized (the values are not stored back into the

aux_stats$ table), the rest of the calculation proceeds as previously discussed. But, inevitably,

there are complications—for example, what happens when you change the db_file_multiblock_

read_count? Table 2-3 compares the effect of noworkload system statistics with normal system

statistics and traditional costing for different values of db_file_multiblock_read_count (see

script tablescan_03.sql in the online code suite).

This example uses the same 10,000 row table of my first example, with one row per block.

For the standard cpu_costing figures, I have deliberately set the MBRC, sreadtim, and mreadtim to

mimic the values derived from the noworkload statistics.

In the first column of results, we see the traditional costing and, as expected, the cost goes

down as the size of the multiblock read goes up. In the second column, we see the effect of the

standard cpu_costing mechanism—the cost is dictated by a fixed MBRC and therefore does not

change as we modify the multiblock read size. Finally, we see the strange variation that appears

from the noworkload cpu_costing—the cost changes with the size of the multiblock read, though

less extremely as the read-size gets very large.

The most important point about this variation in costing in 10g is that you need to know

about it before you migrate. If you aren’t using cpu_costing before you get to 10g, then either

variant of the mechanism will need careful testing for side effects. If you move into 10g without

Table 2-3. Effects of the 10g Workload Statistics

db_file_multiblock_read_count Traditional Standard

cpu_costing

Noworkload

cpu_costing

4 2,397 2,717 3,758

8 1,519 2,717 2,717

16 963 2,717 2,196

32 611 2,717 1,936

64 388 2,717 1,806

128 246 2,717 1,740

C H A P T E R 2 ■ T A B L E S C A N S 21

realizing that you are automatically going to be using cpu_costing (of the noworkload variety),

you will have a second round of testing when you start to gather system statistics and switch to

normal cpu_costing.

The slightly less important question (in this case) is Why? Why do the costs change for

noworkload statistics? Remember that I pointed out that Oracle does not store the synthesized

statistics—it re-creates them for every query (or perhaps every session). Let’s work through the

4-block read as an example:

• MBRC = 4

• sreadtim = 10 + 2 = 12 milliseconds

• mreadtim = 10 + 4 * 2 = 18 milliseconds

We have the standard formula—and for the purposes of getting approximately the right

answer, we’ll just pick the bit about multiblock reads:

Cost = (

 #SRds + -- zero in this case

 #MRds * mreadtim / sreadtim +

 #CPUCycles / (cpuspeed * sreadtim) -- ignore this for the moment

)

cost = (1000/4) * 18/12 =

 2,500 * 1.5 =

 3,750

So the multiblock read size is smaller, but the synthetic multiblock read time is also smaller

and we have to do more of them. I think the I/O component of 3,750 that we get from the

preceding working is close enough to the observed value of 3,758 that we can postpone pursuing

the CPU component again.

The interference between noworkload system statistics and the use of different block sizes is

left as an exercise for you to do on your own. (But you might like to read script tablescan_04.sql

from the online code suite.)

Of course, there are still lots of little details left to examine—which we can do by running

various test cases. But here are a few answers:

When Oracle executes the tablescan, how many blocks does it try to read in a multiblock

read? Is it the value of MBRC, the value of db_file_multiblock_read_count, or something else?

Answer: Oracle still tries to use the actual value for db_file_multiblock_read_count—scaled up

or down if we are reading from a tablespace with a nondefault block size. I actually had my

db_file_multiblock_read_count set to 8, so it was silly to set the MBRC to 12, but for the purposes

of the arithmetic the optimizer believed me, and then the run-time engine read the table 8

blocks at a time.

Where did the extra 1 come from in the I/O cost when db_file_multiblock_read_count

was set to 32? I don’t know. But I have come across a couple of other places in the optimizer

code where modifying the db_file_multiblock_read_count produces a change in the cost that

obviously should not happen. For the moment I’m going to assume that the odd 1 is a strange

rounding error or minor aberration—until I find an example where the difference is significant

and merits more attention.

www.allitebooks.com

http://www.allitebooks.org

22 C H A P T E R 2 ■ T A B L E S C A N S

The CPU Bit

The next important question is How do you convert the cpu_cost quoted in the plan_table

before adding it to the io_cost to produce the final cost, and where does the cpu_cost come from

anyway? To answer the first part, we look at the formula, our recorded values, and the literal

value in the execution plan for the cpu_cost:

• The formula gives the CPU cost as: #CPUCycles / (cpuspeed * sreadtim)

• CPUSPEED = 500MHz

• sreadtim = 5 milliseconds = 5,000 microseconds (standardizing units of time)

• #CPUCycles (called cpu_cost in the plan_table) = 72,914,400

Slotting the figures in place: 72,914,400 / (500 * 5,000) = 29.16576. And the optimizer

rounds CPU costs up in 9.2 (but not, apparently, in 10g), giving us the CPU cost of 30 that we

wanted to see.

ROUNDING

Although the optimizer always used to round costs up, you will find that a new parameter called

_optimizer_ceil_cost has appeared in 10g with a default value of true. But it seems that in this case,

true means false, and false means true; and it may only apply to the CPU costs anyway.

Finding out exactly where the original count of 72,914,400 operations came from is much

harder. If you care to run through a set of extremely tedious experiments, you could probably

track it down—approximately—to details like these:

• Cost of acquiring a block = X

• Cost of locating a row in a block = Y

• Cost of acquiring the Nth (in our case the 2nd) column in a row = (N – 1) * Z

• Cost of comparing a numeric column with a numeric constant = A

And when you’ve got it all worked out, the constants will probably change on the next

point release anyway.

However, to give you an idea of how powerful CPU costing can be—and how you may find

that some queries run faster for no apparent reason after upgrading to 9i—I’d like to present an

example of CPU costing in action.

The Power of CPU Costing

This example started life as a production issue, before being stripped back to a simple test case.

The original code was running under 8i, and displaying an odd performance problem, so I

re-created the data on a 9i database to see if the problem would go away—and it did. I then

discovered that the problem had gone away because CPU costing allowed the optimizer in 9i

to do something that the 8i optimizer could not do.

C H A P T E R 2 ■ T A B L E S C A N S 23

create table t1(

 v1,

 n1,

 n2

)

as

select

 to_char(mod(rownum,20)),

 rownum,

 mod(rownum,20)

from

 all_objects

where

 rownum <= 3000

;

-- Collect statistics using dbms_stats here

This is a simple table of three thousand rows. The data has been constructed (cpu_costing.sql

in the online suite) to demonstrate two points. Notice that the v1 and n2 columns are only

allowed to hold 20 different values and, apart from issues of data type, hold the same values.

Column n1 is unique across the table.

We now run three separate queries, and pass them through a proper explain plan so that

we can isolate the CPU costs. I have used the hint ordered_predicates in these queries to force

Oracle to apply the predicates in the order they appear in the where clause. In this test, 8i would

have no option to do otherwise, but 9i can take a cost-based decision to re-order the predicates.

(Note: This test uses the values for the system statistics that I quoted earlier in the chapter.)

select

 /*+ cpu_costing ordered_predicates */

 v1, n2, n1

from

 t1

where

 v1 = 1

and n2 = 18

and n1 = 998

;

select

 /*+ cpu_costing ordered_predicates */

 v1, n2, n1

from

 t1

24 C H A P T E R 2 ■ T A B L E S C A N S

where

 n1 = 998

and n2 = 18

and v1 = 1

;

select

 /*+ cpu_costing ordered_predicates */

 v1, n2, n1

from

 t1

where

 v1 = '1'

and n2 = 18

and n1 = 998

;

As you would expect, the execution plan in all three cases is a full tablescan, and if you use

autotrace to see what’s going on, you will discover only that the cost of the query (in all three

cases) is 6. But if you use a proper query against the plan_table, reporting the columns cpu_cost

and filter_predicates (yet another column that appeared in 9i), you will see the results

summarized in Table 2-4.

It is the column filter_predicates that tells you exactly what is going on, and why the

CPU cost can change even though the plan structure is the same. Based on the information it

has about the different columns, including the low, high, number of distinct values, and so on,

the optimizer in 9i is capable of working out (to a reasonable degree of accuracy) that the first

query will require the following operations:

Table 2-4. Predicate Order Can Affect the Cost

Predicate Order CPU Cost filter_predicates

 v1 = 1

and n2 = 18

and n1 = 998

1,070,604 TO_NUMBER("T1"."V1")=1

AND "T1"."N2"=18

AND "T1"."N1"=998

 n1 = 998

and n2 = 18

and v1 = 1

762,787 "T1"."N1"=998

AND "T1"."N2"=18

AND TO_NUMBER("T1"."V1")=1

 v1 = '1'
and n2 = 18
and n1 = 998

770,604 "T1"."V1"='1'
AND "T1"."N2"=18
AND "T1"."N1"=998

C H A P T E R 2 ■ T A B L E S C A N S 25

• Convert column v1 to a number 3,000 times, and compare—to produce 150 rows.

• For those 150 rows, compare n2 with a number—to produce 8 (technically 7.5) rows.

• For those 8 rows, compare n1 with a number.

That’s 3,000 coercions and 3,158 numeric comparisons. On the other hand, the second

query will require the following:

• Compare n1 to a numeric 3,000 times—to produce just one row (probably).

• For that one row, compare n2 with a number—to produce just one row (probably).

• For that one row, coerce v1 to a number and compare.

That’s 3,002 numeric comparisons and a single coercion—which is a big saving in CPU.

And if you take the ordered_predicates hint out of the first query, the optimizer automatically

chooses to rearrange the predicates to match the order of the second query. (The default setting of

true for parameter _pred_move_around gives you a hint that this can happen.)

Just as a final detail, the third query repeats the predicate order of the first query, but uses

the correct string comparison, instead of an implicit conversion. Eliminate those 3,000 conver-

sions and the CPU cost of the query drops from 1,070,604 to 770,604, a difference of exactly

300,000. This tends to suggest that the to_number() function has been given a cost of 100 CPU

operations.

The BCHR Is Dead! Long Live the BCHR!
The next big change isn’t in production yet—but the signs are there in 10g that something

dramatic is still waiting in the wings. (The section heading isn’t intended to be serious, by the way.)

It has become common knowledge over the last few years that the buffer cache hit ratio

(BCHR) isn’t a useful performance target—although plotting trend lines from regular snapshots

can give you important clues that something is changing, or that a performance anomaly

occurred at some point in time.

One of the biggest problems of the buffer cache hit ratio is that it is a system-wide average, and

one statistically bizarre object (or query) can render the value completely meaningless. (For a

demonstration of this fact, you can visit Connor McDonald’s web site, www.oracledba.co.uk, to

download the “Set Your Hit Ratio” utility).

But what if you track the cache hit ratio for every individual object in the cache—updating

the figures every 30 minutes, maintaining rolling averages and trend values? Could you do

anything useful with such a precisely targeted data collection?

One of the defects in early versions of the CBO is that the arithmetic works on the basis that

every block visit goes to a data block that has never been visited before and therefore turns into

a physical disk read. There were a couple of parameters introduced in 8i to work around the

problems this caused (optimizer_index_cost_adj—which you will meet in Chapter 4, and

optimizer_index_caching—which you will also see in Chapter 4, and again in Chapter 11). But

in 9i, Oracle collects statistics about logical block requests and physical disk reads for every

data segment.

In fact, Oracle seems to have several ways of collecting cache-related statistics. 9i intro-

duced the dynamic performance view v$segstat, and 10g expanded the range of statistics the

26 C H A P T E R 2 ■ T A B L E S C A N S

view holds. Here, for example, is a query to discover the activity against a particular data segment

(the t1 table used in earlier examples in this chapter) in a 10g database:

select

 *

from v$segstat

where obj# = 52799

;

 TS# OBJ# DATAOBJ# STATISTIC_NAME STATISTIC# VALUE

----- ---------- ---------- -------------------------- ---------- ----------

 4 52799 52799 logical reads 0 21600

 4 52799 52799 buffer busy waits 1 0

 4 52799 52799 gc buffer busy 2 0

 4 52799 52799 db block changes 3 240

 4 52799 52799 physical reads 4 23393

 4 52799 52799 physical writes 5 10001

 4 52799 52799 physical reads direct 6 0

 4 52799 52799 physical writes direct 7 10000

 4 52799 52799 gc cr blocks received 9 0

 4 52799 52799 gc current blocks received 10 0

 4 52799 52799 ITL waits 11 0

 4 52799 52799 row lock waits 12 0

 4 52799 52799 space used 14 0

 4 52799 52799 space allocated 15 82837504

 4 52799 52799 segment scans 16 4

This wealth of information is invaluable for troubleshooting—note particularly the items

identifying contention points (buffer busy waits, gc buffer busy, ITL waits, row lock waits)

and the explicit finger-pointing at tablescans and index fast full scans (segment scans).

In passing, the missing values of 8 and 13 are deliberately excluded by the view definition,

and refer to aging timestamp and service ITL waits, respectively—the latter may be quite inter-

esting for index block splits.

V$SEGSTAT BUGS IN 9I

Although v$segstat is an extremely valuable view for performance monitoring (taking the usual snapshots

over short time intervals, of course), it has a couple of bugs in 9i.

In earlier versions, when you truncate or move a table, the data_object_id (physical ID) of a segment

changes—however, the statistics for the object are not cleared from v$segstat. In later versions, the table

statistics will be cleared, but the defunct statistics for the corresponding indexes are not.

Moreover, in current versions (9.2.0.6 and 10.1.0.4 as I write), virtually any query against this view or its

underlying x$ seems to result in an irretrievable memory leak of around 15KB from the SGA—unless the query

contains an order by clause—which could eventually result in the instance effectively stopping with chronic

ORA-04031 errors.

C H A P T E R 2 ■ T A B L E S C A N S 27

For the purposes of the optimizer, though, the interesting statistics appear to be logical

reads and physical reads. I have to admit that I was a little surprised by the fact that my example

showed more physical reads than logical reads. The logical reads statistic is sampled,

though, and this may explain the discrepancy, especially since my use of this object had been

a little extreme. (Another alternative is that the sample clause used by the dbms_stats package

when estimating statistics on a table can result in a variant of the tablescan run-time mecha-

nism that literally does report more physical I/Os than logical I/Os.)

If we have data that tells us what fraction of logical reads against an object usually turn

into physical reads, and we derive a sensible metric from that information, perhaps we can

fold that metric back into the next pass when we optimize a query against that object.

There is just one little problem with this suggestion. How do you figure out what Oracle is

doing (or going to do) with this information? There are various bits of evidence lying around—

in fact, there is too much evidence.

Consider the tables sys.tab_stats$, and sys.ind_stats$. Appearing in 10g, they both

include columns called obj# and cachehit—apparently some sort of cache hit ratio at the

(logical) object level. Neither of these tables seems to be populated by default (yet), although

they do appear in various recursive queries.

Consider also the table sys.cache_stats_1$, with the following interesting columns

picked out of its description (notice particularly the inst_id—different RAC instances could

have different, localized cache hit ratios).

SQL> desc cache_stats_1$

 Name Null? Type

 --- -------- ----------------------------

 DATAOBJ# NOT NULL NUMBER

 INST_ID NOT NULL NUMBER

 CACHED_AVG NUMBER

 CACHED_SQR_AVG NUMBER

 CHR_AVG NUMBER

 CHR_SQR_AVG NUMBER

 LGR_SUM NUMBER

 LGR_LAST NUMBER

 PHR_LAST NUMBER

This looks much more like a sensible attempt to keep some sort of rolling metric about

caching and segment-based cache hit ratios—and we find in support of this table a complex

merge statement being executed at regular intervals by mmon (the manageability monitor

process) to update this table.

A quick check of the dbms_stats package also shows that an option to gather cache statistics

has been added to many of the stats gathering procedures. And you will find that these procedures

access the cache_stats_1$ table if you run something like this:

execute dbms_stats.gather_table_stats(user,'t1',stattype => 'cache')

Finally, note the two hidden parameters:

_cache_stats_monitor (Default value TRUE)

_optimizer_cache_stats (Default value FALSE)

28 C H A P T E R 2 ■ T A B L E S C A N S

The first one enables collection of cache statistics, the second one enables the use of cache

statistics for optimization—and since it can be set at the session level, it can’t really hurt to try

fiddling with it (on a test database).

set autotrace traceonly explain

alter session set "_optimizer_cache_stats" = true;

select count(*) from t1;

alter session set "_optimizer_cache_stats" = false;

select count(*) from t1;

set autotrace off

In this particular test, the cost of the tablescan with _optimizer_cache_stats set to

false was 5,030 (this was following on from the 2KB block test earlier). When I switched

_optimizer_cache_stats to true, the cost dropped to 5,025.

Unfortunately, I couldn’t see any SQL accessing cache_stats_1$ during the optimization

phase when I enabled cache stats. On the other hand, the optimizer always accessed the empty

tab_stats$ and ind_stats$ tables to optimize a new statement.

I’m still in the dark about what this scattered collection of observations means—but there

seem to be at least two groups in Oracle Corporation who are working on ideas about including

localized cache hit ratios into the optimizer. If or when the feature goes into production, it’s

sure to fix some existing problems; it’s also likely to create some new ones. How, for example,

do you work out what the execution plan was 24 hours after a performance problem has come

and gone, when the localized cache hit ratios have changed or you’re only allowed to run diag-

nostics on the UAT system where the localized cache hit ratios have nothing to do with the

figures you get from production? (You may have to license the AWR whether you like it or not.)

Parallel Execution
Parallel query (or parallel execution as it became in 8i) is another feature of the Oracle data-

base where a seemingly small change in the costing strategy produces a dramatic change in the

cost calculations. The best place to see this is in our nice simple tablescan; and the change for

this simple operation is so dramatic that you won’t have any trouble believing how much

difference it could make to a more complex query.

Re-create the table from our first test, and run the following queries against it with

autotrace enabled. Repeat the following queries in 8i, 9i, and 10g, first with system statistics

disabled (script parallel.sql in the online code suite) and then using the system statistics

defined earlier in the chapter (see script parallel_2.sql in the online code suite):

select /*+ parallel(t1,1) */ count(*) from t1;

select /*+ parallel(t1,2) */ count(*) from t1;

select /*+ parallel(t1,3) */ count(*) from t1;

select /*+ parallel(t1,4) */ count(*) from t1;

select /*+ parallel(t1,5) */ count(*) from t1;

select /*+ parallel(t1,6) */ count(*) from t1;

select /*+ parallel(t1,7) */ count(*) from t1;

select /*+ parallel(t1,8) */ count(*) from t1;

C H A P T E R 2 ■ T A B L E S C A N S 29

Assuming you have parameter parallel_max_servers set to at least 8, you should get

results similar to those in Table 2-5 for the cost of the query.

Ignore, for the moment, the last two columns, which are reporting the results with CPU

costing enabled, and focus on the first three sets of costs. You will notice that the values for 9i and

10g don’t quite agree with each other, but at least they are reasonably close to (serial cost / degree

of parallelism). But the most obvious feature is that the cost in 8i never changes, no matter

what the degree of parallelism.

Essentially, 8i costs and optimizes your query for the best serial path, and then runs it in

parallel. On the other hand, 9i assumes that it can execute a completely collision-free 100%

parallel run, effectively optimizing for a set of data downsized by a factor of (degree of parallelism).

Allowing for small rounding errors, the numbers from 10g suggest that it has introduced a

parallel efficiency factor of 90% in the arithmetic. The actual figures suggest the following

version-dependent formulae for a parallel tablescan:

8i Cost at degree N = serial cost

9i Cost at degree N = ceil(serial cost / N)

10g Cost at degree N = ceil(serial cost / (0.9 * N))

This leaves you with three issues to consider. First, 8i is not optimizing parallel queries

properly. Second, as you upgrade, costs of parallel execution can change dramatically, and you

may not be able to predict the side effects. Third, the arithmetic used by 9i assumes that there

will be absolutely no interference between parallel execution slaves—and that’s not going to be

very realistic in most cases.

The change between 8i and 9i is controlled by parameter optimizer_percent_parallel

(hidden from 9i onwards as _optimizer_percent_parallel). In 8i, the default value was zero—

in other words, calculate as serial. In 9i the default value is 101—which causes Oracle to

perform its calculations on the basis of 100% parallelism.

You can, in theory, set the parameter to any value between 0 and 101. If you do, then

the optimizer does a straight-line interpolation between the serial cost (the Resc figure in a

Table 2-5. Effects of different degrees of parallelism

Degree 8i 9i (I/O) 10g (I/O) 9i (CPU) 10g (CPU)

Serial 1,518 1,519 1,519 5,031 5,030

2 1,518 760 844 2,502 2,779

3 1,518 507 563 1,668 1,852

4 1,518 380 422 1,252 1,389

5 1,518 304 338 1,002 1,111

6 1,518 254 282 835 926

7 1,518 217 242 716 794

8 1,518 190 211 627 695

30 C H A P T E R 2 ■ T A B L E S C A N S

10053 trace) and the parallel cost at full parallelism (the Resp figures in a 10053 trace), and then

picks the point along the line from serial to parallel that represents your required percentage.

(The same interpolation mechanism applies to sorting and to some aspects of hash joins, but

the simple tablescan is the best way to demonstrate the arithmetic.)

For example, from the table of 9i results, the cost of parallel degree 4 is 380, and the cost of

a serial scan is 1519. If we set _optimizer_percent_parallel to 75, then the final cost would be

calculated as 25% of 1519 plus 75% of 380, which comes to 664.75. You might note from the

table of results that running parallel 4 at 75% does not give you the same cost as running

parallel 3 at 100%.

Yet another consideration comes into play in 9i and 10g if you set the parameter

parallel_adaptive_multi_user to true (and this is the default value for 10g). When this is set,

only a limited number of users are allowed to run at the default degree of parallelism—and on

my test systems, this limit was one in 9i, and two in 10g. So the optimizer is effectively costing

parallel execution on the basis that no more than one or two parallel queries are going

to be running at any one moment. The limit is set by the hidden parameter _parallel_

adaptive_max_users, but don’t fiddle with it as it’s one of the parameter values used by Oracle

at startup time to calculate the value of parallel_max_servers, so it will have side effects.

Other oddities occur with the costing of parallel tablescans. When you have not enabled

system statistics (CPU costing), the calculation uses the same adjusted dbf_mbrc as the serial

scan. But parallel scans are direct path reads—in other words, reads that bypass the data buffer—

so they don’t have to worry about the side effects of catering to blocks that are already in the cache,

and therefore it is almost inevitable that they will be the full db_file_multiblock_read_count

size. The calculation does not cater to this different mechanism.

PARALLEL SCANS AND DIRECT PATH READS

Parallel scans use direct path reads to bypass the data buffer and read blocks directly into local (PGA) memory.

This helps to reduce the impact on the data buffer (but might mean you want a small Oracle buffer and a large

file system buffer in some special cases).

But if the block in the data buffer is dirty (newer than the block on disk), then you might think a direct

read would not see the latest version, and may therefore get the wrong result. To solve this problem, a parallel

query will first issue a segment checkpoint to get all dirty blocks for the segment written to disk before it

reads. (The cost is exposed through statistic DBWR parallel query checkpoint buffers written in

10g, and otherwise indicated by enqueues of type TC.)

This could lead to a performance problem in rare cases that mixed a large data buffer, a busy OLTP

system, and parallel execution for reports—the work done by the database writer (DBWR) walking the checkpoint

queue to find the relevant dirty blocks could have an undesirable impact on the OLTP activity.

Now take a closer look at columns 5 and 6 in the table, the set of results with system statis-

tics (CPU costing) enabled. The thing that stands out most clearly is that the optimizer is using

the stored value for the MBRC statistic in the calculation. And again we can see that 10g has intro-

duced a 90% factor into the calculation.

C H A P T E R 2 ■ T A B L E S C A N S 31

But this raises another issue. Again, Oracle will use the actual value of parameter

db_file_multiblock_read_count to do direct reads against the table, so the cost based opti-

mizer is apparently using an unsuitable value in the cost calculation. In this case, though, there

is a saving grace. If all you do are large, parallel tablescans, then the code that generates the

MBRC will see nothing but the effects of your direct path multiblock reads, so the value gathered

by dbms_stats.gather_system_stats will be the correct value. On the downside, of course, if

you are running a mixed OLTP/DSS system with lots of multiblock reads that aren’t parallel,

then the value for MBRC is likely to be unsuitable for both the serial and parallel queries, falling

somewhere between the two ideal values.

There is one other cunning little detail to CPU costing that can be seen most clearly in the

9i figures for parallel two. The cost drops from 5,031 to 2,501 as we go from serial to parallel

two—but as we saw earlier on, 5,031 is the sum of 5,001 for the I/O cost and 30 for the CPU cost.

When we go parallel, the optimizer “loses” the CPU cost. In fact, examination of the trace files

for 9i and 10g show that there is a small component of CPU cost in place. Is this a bug? Probably

not. A large fraction of the CPU cost of accessing a row comes from the CPU cost of locating,

latching, and pinning a buffered block—but parallel queries don’t use the cache, they do direct

reads, so perhaps most of the CPU cost should disappear.

Index Fast Full Scan
The most important point to remember about the index fast full scan is simply that it exists as

a possible execution plan. It doesn’t appear very often in the current versions of the optimizer,

but it is a path that can appear without being hinted.

In effect, for a query that references just a set of columns in an index, Oracle can decide to

treat an index like a skinny table with a few bits of garbage (such as stored rowids and meaningless

branch blocks) mixed in. This means Oracle can read the index segment in physical block

order, using multiblock reads, throwing away the branch blocks as it goes. The index entries

will not be returned in index order as Oracle will not be walking from leaf block to leaf block

following the usual pointers, but in theory the cost of any sorting that may subsequently be

needed will be outweighed by the benefit of getting the data off disk more quickly.

■Note Index fast full scans are just like tablescans. They use multiblock reads and “large” indexes (defined

by the same 2% of the block buffer count at startup) that are loaded into the discard end of the LRU list. They

also suffer from a bug that affects tablescans: the buffer touch counts are not incremented (even for “small”

indexes/tables) if the block has been loaded by an index fast full scan. This bug has been fixed in 10g.

For example, re-creating the first data set, we could do the following (see script

index_ffs.sql in the online code suite):

www.allitebooks.com

http://www.allitebooks.org

32 C H A P T E R 2 ■ T A B L E S C A N S

create index t1_i on t1(val);

execute dbms_stats.gather_table_stats(user,'t1',cascade=>true);

set autotrace traceonly explain

select

 count(*)

from

 t1

where

 val > 100;

Execution Plan (9.2.0.6)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=5 Card=1 Bytes=4)

1 0 SORT (AGGREGATE)

2 1 INDEX (FAST FULL SCAN) OF 'T1_I' (INDEX) (Cost=5 Card=3739 Bytes=14956)

Unsurprisingly, you will find that the cost of an index fast full scan uses the same arith-

metic as the cost of a full tablescan. However, the results often seem to be just slightly wrong;

which might make you ask where the optimizer finds the number that it uses for the block

count that is needed for the tablescan formula.

When you generate statistics for a table, one of the results is the number of blocks below

the high water mark. When you generate the statistics for an index, you get the number of leaf

blocks and the index blevel; but you don’t get any information about the number of branch

blocks, or the index segment’s HWM.

So what number does the optimizer use as the basis for the cost of the index fast full scan?

The answer seems to be the number of leaf blocks—which is fairly reasonable, because in a

nice, clean randomly generated index, with no catastrophic updates and deletes, the number

of leaf blocks is probably within 1% of the total number of blocks below the high water mark.

Strangely, if you have not collected statistics on an index, Oracle uses its knowledge of the high

water mark from the index’s segment header block to get the right answer.

It is possible though that in some scenarios you could push an index into an unusual state

where the number of populated leaf blocks was much smaller than the number of blocks below

the high water mark (unlucky or inappropriate use of the coalesce command could have this

effect—sometimes it really is a good idea to rebuild an index), resulting in an inappropriate

index fast full scan cost when a range scan would be more efficient.

INVESTIGATIVE TECHNIQUES

You may wonder how I came to the conclusion that the index fast full scan cost was dictated by the statistic

leaf_blocks.

Initially, instead of continually re-creating the same index with different values for pctfree, I used pack-

aged procedure dbms_stats.set_index_stats to change the leaf_blocks value for an index to see

what happened to the cost of the query. Then I changed the blevel, and so on. The script hack_stats.sql

in the online code suite demonstrates the method.

C H A P T E R 2 ■ T A B L E S C A N S 33

This type of problem can have surprising side effects. If you have “emptied” a range of leaf

blocks, then the analyze command reports the leaf block count as the number of leaf blocks

currently in the index structure, whereas the procedure dbms_stats.gather_index_stats

reports the count as the number of leaf blocks that actually have data in them. (When all the

rows have been deleted from a leaf block, it is temporarily left in place in the tree, but also

attached to the index segment’s freelist.) When you switch from using the deprecated analyze

to the strategic dbms_stats, you may find that some SQL statements suddenly start using index

fast full scans “for no apparent reason.”

This problem could only appear in queries (or execution plan lines) that could be satisfied

completely within an index, and so probably won’t be very common at present. But you never

know what exciting new feature the next release of the optimizer might introduce and whether

a problem might suddenly appear. It’s surprising how often an enhancement in the optimizer

helps 99 people out of 100—and causes major headaches for the odd one out. Here, for example,

is an execution plan that is perfectly reasonable (in the right circumstances) but is not yet avail-

able to the optimizer:

Execution Plan (? 11.1.0.0 ?)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=30 Card=18 Bytes=144)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=30 Card=18 Bytes=144)

2 1 SORT (ORDER BY)

3 2 INDEX (FAST FULL SCAN) OF 'T1_I' (INDEX) (Cost=12 Card=18)

The plan (a complete fiction, I must stress) starts with a fast full scan of an index to find a

list of rowids based on nonleading columns, sorts by block ID, and then accesses the table. If

you had an index that was much smaller than its base table, and you were after just a few rows

meeting some criteria that could be tested in the index (but not identified by the leading edge

of the index), then this could, in theory, be a better execution plan than an index skip scan.

At present, you could get quite close to emulating this path with SQL like the following

(also in script index_ffs.sql in the online code suite):

select

 /*+ ordered no_merge(tb) use_nl(ta) rowid(ta) */

 *

from

 (

 select /*+ index_ffs(t1) */

 rowid

 from t1

 where val > 250

 order by rowid

) tb,

 t1 ta

where

 ta.rowid = tb.rowid

;

Execution Plan (9.2.0.6)

34 C H A P T E R 2 ■ T A B L E S C A N S

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1834 Card=1818 Bytes=209070)

1 0 NESTED LOOPS (Cost=1834 Card=1818 Bytes=209070)

2 1 VIEW (Cost=16 Card=1818 Bytes=12726)

3 2 SORT (ORDER BY) (Cost=16 Card=1818 Bytes=19998)

4 3 INDEX (FAST FULL SCAN) OF 'T1_I' (INDEX) (Cost=5 Card=1818 Bytes=19998)

5 1 TABLE ACCESS (BY USER ROWID) OF 'T1' (TABLE) (Cost=1 Card=1 Bytes=108)

If the optimizer ever acquires this new access path, then some people may suddenly have

problems on an upgrade because they fall into that unhappy band of DBAs who have indexes

where the number of leaf blocks in use is always far less than the number of blocks below the

high water mark. Suddenly some people really could have a good reason for regularly rebuilding

a few indexes.

Partitioning
The critical issue with partitioned objects can best be demonstrated with a simple example

where we only have to look at the cardinality (row estimates), rather than the cost of the execution

plan (see script partition.sql in the online code suite):

create table t1 (

 part_col not null,

 id not null,

 small_vc,

 padding

)

partition by range(part_col) (

 partition p0200 values less than (200),

 partition p0400 values less than (400),

 partition p0600 values less than (600),

 partition p0800 values less than (800),

 partition p1000 values less than (1000)

)

nologging as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 5000

)

select

 trunc(sqrt(rownum-1)),

 rownum-1,

 lpad(rownum-1,10),

 rpad('x',50)

from

 generator v1,

C H A P T E R 2 ■ T A B L E S C A N S 35

 generator v2

where

 rownum <= 1000000

;

-- Collect statistics using dbms_stats here

I have used subquery factoring (a specific 9i feature) to generate a large table, in this case

with the materialize hint to stop Oracle from rewriting the subquery named generator as an

in-line view and then optimizing a big messy statement. Even a minimalist database install will

have more than 3,000 rows in view all_objects, so this type of trick could be used to produce

a table of up to 9,000,000 rows (900,000,000 or more, possibly, on a full Java install) with just

two copies of the factored subquery.

By generating the partitioning column with the trunc(sqrt()) function, I have conveniently

managed to build a partitioned table where the number of rows in each partition gets larger

and larger as you move up the partitions.

select

 partition_name,

 num_rows

from

 user_tab_partitions

order by

 partition_position

;

PARTITION_NAME NUM_ROWS

-------------------- ----------

P0200 40,000

P0400 120,000

P0600 200,000

P0800 280,000

P1000 360,000

After building the table and calling dbms_stats.gather_table_stats to compute table

statistics, I ran three queries against the table, and checked their execution plans carefully. The

first query used literal values and had a predicate that restricted it to one specific partition. The

second query used literal values, but the predicate ranged across two consecutive partitions.

The last query was the same as the second query but used bind variables instead of literals.

■Note Autotrace is often sufficient to do a quick check on what the optimizer is doing, but it does have

limitations. One of the most serious limitations appears with partitioned tables, when autotrace fails to

report three of the critical plan_table columns that help you to understand how effective your partitioning

strategy has been. This issue has been addressed in 10g release 2 where autotrace has been recoded to

call the dbms_xplan package.

36 C H A P T E R 2 ■ T A B L E S C A N S

These are the queries—each followed by the execution plans provided by dbms_xplan from

9.2.0.6, with a description of how the optimizer has worked out the cardinality (Rows) column.

/*+ Query 1 - one partition */

select count(*)

from t1

where part_col between 250 and 350

;

| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 4 | 193 | | |

| 1 | SORT AGGREGATE | | 1 | 4 | | | |

|* 2 | TABLE ACCESS FULL | T1 | 61502 | 240K| 193 | 2 | 2 |

 2 - filter("T1"."PART_COL">=250 AND "T1"."PART_COL"<=350)

The optimizer has identified partition 2 as the single partition that will be hit—note the

values for pstart and pstop. If we check the statistics for the part_col for this one partition, we

find that there are 120,000 rows in the partition, the column data varies from 200 to 399, and it

has 200 distinct values.

Of the available data range, we want the range 250 to 350, which is about 120,000 * (350 –

250) / 199, plus an extra 120,000 * 2 / 200 that Oracle adds in because our range is closed at both

ends. (I will cover this in detail in Chapter 3.) Total row count is therefore 120,000 * ((100/199)

+ 1/100) = 61,502 (rounding up from 61,501.5).

So, with a known single partition at parse time, Oracle has used the partition-level statistics.

/*+ Query 2 - multiple partitions */

select count(*)

from t1

where part_col between 150 and 250

;

| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 4 | 257 | | |

| 1 | SORT AGGREGATE | | 1 | 4 | | | |

| 2 | PARTITION RANGE ITERATOR| | | | | 1 | 2 |

|* 3 | TABLE ACCESS FULL | T1 | 102K| 398K| 257 | 1 | 2 |

3 - filter("T1"."PART_COL">=150 AND "T1"."PART_COL"<=250)

C H A P T E R 2 ■ T A B L E S C A N S 37

We have crossed a partition boundary—Oracle has noted that we will be hitting partitions 1

and 2. Checking the table and column statistics, we find that between them the partitions have

160,000 rows, and the column has 400 distinct values with a range from 0 to 399, from which we

want the range 150 to 250. Let’s apply the same formula as last time: 160,000 * ((250 – 150)/399

+ 2/400) = 48,100. The result is not even close.

We could check to see whether Oracle has done two sets of arithmetic, one for the range

150 <= part_col < 200 and one for 200 <= part_col <= 250, and then added them. It hasn’t—this

would give the result 40,800.

The answer comes from the table-level statistics. There are 1,000,000 million rows, with

1,000 different values, and a range of 0 to 999, giving us 1,000,000 * ((250 –150) / 999 + 2/1,000)

= 102,100.

With multiple-known partitions at parse time, Oracle uses the table-level statistics.

/*+ Query 3 - multiple partitions, using binds */

variable v1 number

variable v2 number

execute :v1 := 150; :v2 := 250

select count(*)

from t1

where part_col between :v1 and :v2

;

| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 4 | 1599 | | |

| 1 | SORT AGGREGATE | | 1 | 4 | | | |

|* 2 | FILTER | | | | | | |

| 3 | PARTITION RANGE ITERATOR| | | | | KEY | KEY |

|* 4 | TABLE ACCESS FULL | T1 | 2500 | 10000 | 1599 | KEY | KEY |

 2 - filter(TO_NUMBER(:Z)<=TO_NUMBER(:Z))

 4 - filter("T1"."PART_COL">=TO_NUMBER(:Z) AND "T1"."PART_COL"<=TO_NUMBER(:Z))

An estimate of 2,500 is not good, especially since we know the right answer is in the region

of 40,000—so where has it come from? Starting from a position of incomplete knowledge (note

in particular the KEY - KEY option for the partition start and stop in the plan), the optimizer has

used table-level statistics (i.e., 1,000,000 rows). In this case, though, there is no information

about actual values, so the optimizer has fallen back on some hard-coded constants—namely

0.25% for “between :bind1 and :bind2”; the 2,500 rows is 0.0025 * 1,000,000.

38 C H A P T E R 2 ■ T A B L E S C A N S

OVERUSING BIND VARIABLES

Oracle users have been known to go through fads from time to time. One of the more recent ones is the

constant advice to use bind variable instead of literals because of the parsing and latching overhead you

otherwise get. Enthusiasm for this strategy can go a little too far. In some cases, the optimizer will do a very

bad job if it can’t see literal values. As a guideline, heavy-duty reports that hit big tables for a lot of data probably

should use literal values—the overhead of parsing is likely to be tiny compared to the work done by the query.

Even in OLTP systems, it would be perfectly reasonable to help the optimizer by the judicious use of

literals occasionally, perhaps to the extent of having half a dozen versions of the same query that differed only

in the value of one critical input.

Just to make things more complicated though, 9i and 10g employ bind variable peeking in

most circumstances (but certainly not when running explain plan or autotrace). At run time

the optimizer would have been able to peek at the incoming bind variables and use their values

to produce a cardinality that was likely to be a little more appropriate to that set of values.

Unfortunately, the very next use of the query could supply a completely different set of values—but

the optimizer doesn’t peek at them, it just runs with the plan it got from the first optimization.

This could be an expensive error—and there’s not a lot you can do about it, except know about

it and code your way around it.

■Caution I was recently sent a 10053 trace file from 10.2 that suggested that the optimizer does not

peek at the bind variable for prepared statements coming through the JDBC thin driver. MetaLink note

273635.1 also makes reference to this issue, but only with regard to the 8i version of the driver.

You will have noticed the strange filter predicate on line 2 of the last execution plan. If you

try running this test in 8i and 9i, you will see the important difference that that predicate

makes. Supply the bind variables as :v1 = 300 and :v2 = 250 (in other words, the wrong way

around) for 8i, and if both predicates come from the same partition, Oracle will scan that

partition—despite the fact that there will obviously be no data found. Repeat the test on 9i, and

the extra predicate will automatically be false, and Oracle will not run the next line of the

execution plan.

Returning to the issue of statistics, the problem of partition statistics and table-level statistics

is a difficult one. The commonest use of partitioned tables involves a process that Oracle Corp.

now calls Partition Exchange Loading (or rolling partition maintenance) where you load an

empty table, index it and collect statistics on it, and then do a partition exchange using SQL

like the following:

C H A P T E R 2 ■ T A B L E S C A N S 39

alter table pt1

 exchange partition p0999 with table load_table

 including indexes

 without validation

;

The problem is that this doesn’t bring table-level statistics up to date (in fact, there have

been many reports in the past about table-level statistics vanishing when partition mainte-

nance took place). After you’ve done a partition exchange, you need to have a mechanism that

brings the table-level statistics up to date—preferably without using an excessive amount of

machine resources. You really have to know your data, and the most up-to-date version of the

dbms_stats package, to do this efficiently.

The problem of partitions and table-level statistics echoes on down the chain to subparti-

tions. If you want to query exactly one subpartition of one partition, then the optimizer uses

the statistics for that one subpartition. If you want to query several subpartitions from a single

partition, the optimizer switches to the partition-level statistics for that one partition. If your

query gets any messier in its selection, the optimizer will use the table-level statistics.

Summary
The cost of a tablescan is largely the cost of assumed multiblock reads. To calculate the cost,

the optimizer divides the number of used blocks in the table (below the high water mark) by a

number representing the assumed size of the multiblock read. (It was only when I wrote this

line for the summary that I thought how nice it would be if the parameter included the word

size instead of count and was expressed in KB.)

In 8i, this calculated count of the required number of multiblock reads is the cost.

In 9i, the introduction of system statistics allows the result to be adjusted by factors repre-

senting typical sizes and relative speeds of multiblock reads, and adding in the CPU cost of

visiting the blocks and acquiring data from every row in the blocks.

And 10g holds some clues that at some future date the optimizer will also factor in recent

cache history, which is likely to result in a reduced value for the cost.

For index fast full scans, the number of leaf blocks in the index, rather than the number of

blocks below the high water mark, seems to be the driving value used in the calculation. In

many cases, this will give a reasonable result. There are a couple of scenarios, though, where

the number of leaf blocks can be much smaller than the number of blocks below the high water

mark, and this would result in the cost of an index fast full scan being seriously

underestimated.

Partitioned tables are likely to be a problem. The optimizer can use the statistics from a

single partition if the partition can be identified at parse time; otherwise it uses the table-level

statistics. And the same type of strategy appears with subpartitions of a single partition. In

many cases, you may find that the only way to get the optimizer to produce sensible plans is to

refresh the table-level statistics as you do partition maintenance. This may prove to be a resource-

intensive approach.

40 C H A P T E R 2 ■ T A B L E S C A N S

Test Cases
The files in the download for this chapter are shown in Table 2-6.

Table 2-6. Chapter 2 Test Cases

Script Comments

plan_run81.sql Script to report all columns of the plan_table in 8.1

plan_run92.sql Script to report all columns of the plan_table in 9.2

tablescan_01.sql Builds simple test data set for tablescan costs

calc_mbrc.sql Script to generate adjusted dbf_mbrc values

tablescan_01a.sql Impact of block size on cost for a table fixed at 10,000 blocks

tablescan_01b.sql Impact of multiple block sizes on cost for a table fixed at 80MB

set_system_stats.sql Sample of code to set system statistics

tablescan_02.sql Original test case modified to investigate normal CPU costing

tablescan_03.sql Original test case modified to investigate noworkload CPU costing

tablescan_04.sql Effects of noworkload CPU costing with multiple block sizes

cpu_costing.sql Basic demonstration of predicates moving

parallel.sql Reuses the first tablescan example for parallel testing

parallel_2.sql Version of parallel.sql with system statistics enabled

index_ffs.sql Simple demonstration of fast full scan costs on an index

hack_stats.sql General-purpose script for modifying statistics on an object

partition.sql Demonstration of how partitioned tablescans are costed

setenv.sql Sets the standardized test environment for SQL*Plus

41

■ ■ ■

C H A P T E R 3

Single Table Selectivity

After the chapter on tablescans, you may have expected a chapter on indexed access paths.

But the predicted number of rows (cardinality) generated by an operation plays a crucial part

in selecting initial join orders and optimum choice of indexes, so it is useful to have a good

understanding of how the optimizer estimates the number of rows that are going to be produced

at each step of a plan.

The reason why this chapter’s title includes the term selectivity, rather than cardinality, is

that the optimizer’s calculations of cardinality are based on estimating the expected fraction of

the rows in the current data set that would pass a particular test. That fraction is the number we

call the selectivity. After you’ve worked out the selectivity, the cardinality is simply selectivity *

(number of input rows).

Depending on the circumstances, one concept is sometimes more convenient, or intui-

tive, to use than the other, so I will switch between them fairly freely in the course of the book.

I have made a couple of comments about histograms in this chapter, but in most cases

this chapter describes the calculations that the optimizer uses when there are no histograms in

place. The effects of histograms are examined in Chapter 7.

Getting Started
At a recent conference, I managed to draw an audience of 1,200 people. How many of them do

you think were born in December? If you’ve decided that the answer is about 100, then you’ve

just performed a perfect imitation of the CBO. (I lied about the audience size to keep the

numbers simple, by the way.)

There are 12 possible months in the year. -- known reference

Dates of birth are (probably) evenly scattered through the year. -- assumption

One-twelfth of the audience will be born in any one month. -- month’s selectivity

The request was for one specific month. -- predicate

The requested month does actually exist in the calendar. -- boundary check

There are 1,200 people in the audience. -- base cardinality

The answer is one twelfth of 1,200, which is 100. -- computed cardinality

Let’s turn the question into an SQL statement, and rerun the steps from the optimizer’s

perspective. We’ll have a table called audience, with a column called month_no that uses the

www.allitebooks.com

http://www.allitebooks.org

42 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

numbers 1 to 12 for the months of the year. Being good DBAs, we have generated statistics for

the data. Our query reads like this:

select count(*)

from audience

where month_no = 12

;

Allowing for a little poetic license on my part, the optimizer will perform the following

steps for the month_no column. Note how these steps follow the human line of thinking very

closely, although they add in one check that human intuition allows us to forget. We examine

figures from the view user_tab_col_statistics (or user_tab_columns) and check view

user_tab_histograms to find the following details:

• user_tab_col_statistics.num_distinct is equal to 12.

• user_tab_histograms shows just the low (1) and high (12) values, so assume the values

are evenly spread.

• user_tab_col_statistics.density is equal to 1/12; one month gives one twelfth of the data.

• month_no is equal to 12, single column, equality, so user_tab_col_statistics.density

is usable.

• 12 is between the low_value and high_value of user_tab_col_statistics.

• user_tab_col_statistics.num_nulls is equal to 0 (everyone was born some time—

the computer has to consider it, even though it was intuitively obvious to you).

• user_tables.num_rows is equal to 1,200.

• The answer is one-twelfth of 1,200, which is 100.

The audience is modeled in the script birth_month_01.sql in the online code suite, and the

query for December birthdays produces the following execution plan:

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'AUDIENCE' (Cost=2 Card=100 Bytes=300)

Line 2 is the one we are interested in—this shows Card=100: Oracle has correctly inferred

that there will be 100 rows in the base table that match our test. (The Card=1 in line 0 reflects the

fact that the final output we get from counting those rows is, indeed, a one-line answer.)

You might note a little oddity when you look at the statistics stored in the data dictionary.

select

 column_name,

 num_distinct,

 density

from

 user_tab_col_statistics

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 43

where

 table_name = 'AUDIENCE'

;

COLUMN_NAME NUM_DISTINCT DENSITY

-------------------- ------------ ----------

MONTH_NO 12 .083333333

Oracle appears to be storing the same piece of information twice—the column called

num_distinct (the number of distinct nonnull values) and the column called density (the

fraction of data—ignoring rows with nulls—that would be returned by a query of the type

column = constant). In our example, num_distinct is equal to 12 and density is equal to 1/12;

and in general, you would probably notice that density = 1 / num_distinct. So why does Oracle

appear to store the same information twice?

The two numbers are related in our example, but this is not always true. When you create

a histogram on a column you will (usually) find that the density is no longer 1 / num_distinct

and, when histograms are in place, different versions of Oracle behave in slightly different

ways. Use a different version to run the example, and you find the optimizer in 10g uses the

num_distinct column to work out the result: cardinality = num_rows / num_distinct. If

there had been a histogram in place, the optimizer would have used the density column:

cardinality = num_rows * density.

To confirm this little detail, I used the packaged procedure dbms_stats.set_column_stats

to change the num_distinct and density between two executions of the same query (see script

hack_stats.sql in the online code suite). This showed that 8i always uses the density, but 9i

(like 10g) uses the num_distinct if there is no histogram in place, and density if there is a histo-

gram—although 9i does not pick up the changed values unless you flush the shared pool (a

quirky little oddity and not really relevant unless you’ve implemented scripts to load business-

specific statistics directly into the data dictionary).

ENHANCEMENTS AND PROBLEMS

Lots of little traps are always waiting for you when you upgrade. Here’s one I found with the simple test scripts

I wrote for the month of birth example.

When you use the packaged procedure dbms_stats.gather_table_stats(), it has a default value

for the parameter method_opt. In 8i and 9i, the default was for all columns size 1, which translated into Do

not collect histograms; in 10g the default is for all columns size auto.

Since my standard for testing code prior to the launch of 10g was to execute dbms_stats.gather_

table_state(user, 't1', cascade=>true), I found that some of my test results suddenly went

“wrong” when I upgraded.

The default behavior is actually table-driven in 10g. The code in the dbms_stats package uses a

procedure called get_param to look up the default value for some of the collection options.

You can alter the default behavior by using calls to the associated procedure dbms_stats.set_param.

But I would be a little cautious about doing this. It would be easy to forget that you had done it, and this might

cause a lot of confusion on the next upgrade, or on the next installation you did.

44 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

Null Values
Let’s enhance our example—imagine that 10% of the members in our audience don’t remember

which month their birthday is in (and don’t want to switch their PDAs on in the middle of an

interesting presentation). How many people will put their hands up for December?

Assuming that birthday-aphasia is randomly distributed, there will now be 120 people

who can’t answer the question. These will be represented by a uniform scattering of nulls for

the month_no column of our audience table. How does this affect the statistics and calculations?

These are the figures we see when we query the data dictionary:

user_tables.num_rows is equal to 1,200 -- no change

user_tab_col_statistics.low_value is equal to 1 -- no change

user_tab_col_statistics.high_value is equal to 12 -- no change

user_tab_histograms shows no histogram -- no change

user_tab_col_statistics.num_distinct is equal to 12 -- no change

user_tab_col_statistics.density is equal to 1/12 -- no change

user_tab_col_statistics.num_nulls is equal to 120 -- new data item

The most important point to note is that the presence of null values does not change

num_distinct (or density); the null values are simply ignored for the purposes of generating

statistics. So what do we get as our result for people born in December?

A human argument would go something like this: if 100 people were born in December,

but 10% of the audience don’t remember when they were born, then, assuming a uniform

distribution of amnesia, 90 of the 100 will remember that they were born in December.

The equivalent “argument” from the optimizer is

• Base selectivity = 1/12 (from density or from 1/num_distinct)

• num_nulls = 120

• num_rows = 1200

• Adjusted selectivity = Base selectivity * (num_rows - num_nulls) / num_rows

• Adjusted selectivity = (1/12) * ((1200 - 120)/1200) = 0.075

• Adjusted cardinality = Adjusted selectivity * num_rows

• Adjusted cardinality = 0.075 * 1200 = 90

So, we would expect the cardinality to be 90 for our query—and sure enough, when we run

the test, the cardinality shows up as 90 (script birth_month_02.sql in the online code suite).

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'AUDIENCE' (Cost=2 Card=90 Bytes=270)

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 45

Using Lists
Once we know how to deal with the simple case of column = constant, we can move on to

slightly more complex cases, such as queries involving lists, queries involving lists with nulls,

queries involving two columns, queries involving ranges, and queries involving bind variables.

There are plenty of cases to investigate before we worry about indexes and joins.

Let’s start with the easiest option, in-lists. Sticking with the table that represents our audience

of 1,200 people, we can write a query like the following:

select count(*)

from audience

where month_no in (6,7,8)

;

Given that we’ve selected three months, and we expect 100 people per month, we shouldn’t

be too surprised if the calculated cardinality came out as 300. But I’m going to start my investi-

gation with 8i, and unfortunately, the following execution plan is what we get when we build

the test with that version of Oracle (see in_list.sql in the online suite):

Execution Plan (8.1.7.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'AUDIENCE' (Cost=1 Card=276 Bytes=828)

Where did that 276 in the full scan come from? (Using 9i, or 10g, the cardinality is reported

at 300, as expected.) There are two points to consider here. First, the calculation is obviously

wrong. Secondly, and more importantly, the calculation changes as you upgrade your version

of Oracle—and as I pointed out at the start of this chapter, the correct cardinality is crucial to

getting the correct join order and optimum choice of indexes. You may see some of your execu-

tion plans change “for no reason” when you upgrade.

IN-LIST ERRORS

Internally, the optimizer will convert a predicate like month_no in (6,7,8) to month_no = 6 or

month_no = 7 or month_no = 8. If you add the use_concat hint to the query, the optimizer will then

transform the plan into a union all of its three component parts—at which point 8i suddenly produces the

correct cardinality.

The error that 8i suffers from is that after splitting the list into three separate predicates, it applies the

standard algorithm for multiple disjuncts (the technical term for OR’ed predicates). This algorithm generically

corrects for rows double-counted where the predicates overlap—but of course, the predicates generated from

an in-list are guaranteed not to overlap. 8i transforms the SQL to produce a very special case of disjuncts, and

then fails to process it correctly.

46 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

When an oddity like this shows up, you need to think of two things. First: is the example a

special case? (Our column has only 12 distinct values—would the problem occur, or be so

apparent, if there were more distinct values?) Second: are there closely related areas that might

produce other oddities?

Let’s spend a little time experimenting around these two questions to see what happens.

The code to create the base table was as follows:

create table audience as

select

 trunc(dbms_random.value(1,13)) month_no

from

 all_objects

where

 rownum <= 1200

;

Let’s change this to generate 1,000 possible “months” across 12,000 people (so that the

optimizer should calculate 12 rows per “month number”).

create table audience as

select

 trunc(dbms_random.value(1,1001)) month_no

from

 all_objects

where

 rownum <= 12000

;

We can then create a simple script that queries the tables with longer and longer in-lists

(the online code suite holds separate scripts for the two data sets: in_list.sql uses the original

1,200 rows and in_list_02.sql uses 12,000 rows with 1,000 distinct values):

select count(*) from audience where month_no in (1,2);

select count(*) from audience where month_no in (1,2,3);

select count(*) from audience where month_no in (1,2,3,4);

. . .

select count(*) from audience where month_no in (1,2,3,4,5,6,7,8,9,10,11,12,13,14);

select count(*) from audience where month_no in (

 1, 2, 3, 4, 5, 6, 7, 8, 9,10,

 11,12,13,14,15,16,17,18,19,20,

 21,22,23,24,25,26,27,28,29,30

);

When we produce a table of results, as shown in Table 3-1, you can see that the extreme

divergence that appears in the base case where we had only 12 values is much less obtrusive in

the example with 1,000 different values. In fact, we see no divergence at all in the large example

until the in-list has 14 items in it. Moreover, when you check the values for 9i and 10g, you see

that the cardinalities always come out as N * number of entries in the list until the number of

entries in the list exceeds the number of distinct values.

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 47

So, there is an issue with in-lists, and this may cause problems for systems where the

number of distinct values in a column is small—and when you upgrade those systems, you

may see execution plans changing. But, in the general case, the error in the calculations may be

insignificant. Let’s move on to the issue of other oddities that we might consider after seeing

this one. Will the optimizer do anything unexpected with the following predicates for the table

where the month_no takes only values from 1 to 12 (see oddities.sql in the online code suite)?

where month_no = 25 -- outside high_value

where month_no in (4, 4) -- repeated values

where month_no in (3, 25) -- mixed set of in and out values

where month_no in (3, 25, 26) -- ditto

where month_no in (3, 25, 25, 26) -- ditto with repeats

where month_no in (3, 25, null) -- does the optimizer spot the null ?

where month_no in (:b1, :b2, :b3) -- with or without bind-variable peeking ?

The results of running these tests against 8i, 9i, and 10g are shown in Table 3-2.

Table 3-1. Small Lists of Values Can Give Big Cardinality Errors

Size of List Cardinality—12 Values

8i (9i, 10g)

Cardinality—1,000 Values

8i (9i, 10g)

1 100 (100) 12 (12)

2 192 (200) 24 (24)

3 276 (300) 36 (36)

4 353 (400) 48 (48)

5 424 (500) 60 (60)

6 489 (600) 72 (72)

7 548 (700) 84 (84)

8 602 (800) 96 (96)

9 652 (900) 108 (108)

10 698 (1,000) 120 (120)

11 740 (1,100) 132 (132)

12 778 (1,200) 144 (144)

13 813 (1,200) 156 (156)

14 846 (1,200) 167 (168)

30 1,112 (1,200) 355 (360)

48 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

So, apart from the odd “double-counting” factor introduced by 8i, all three versions

behave the same (sometimes odd) way with in-lists. They don’t notice that values are outside

the high/low range, they don’t notice that the list may include nulls. They do notice when you

have explicit duplicates in the list—but don’t notice if those duplicates are hidden inside bind

variables.

As a final observation on in-lists, you might like to experiment with not in, using queries

such as

select count(*)

from audience

where month_no NOT in (1,2)

;

Allowing for slight rounding errors, you will find that 8i is self-consistent. The cardinality

for month_no in {specific list} plus the cardinality for month_no not in {specific list}

comes to 1,200—the total number of rows in the table.

However, 9i and 10g are not self-consistent—although the cardinality of month_no in

{specific list} changes as you migrate from 8i to 9i, the mechanism for calculating month_no

not in {specific list} has not.

Further experimentation is left as an exercise for you to do on your own—but scripts

in_list_03.sql and pv.sql are available in the online code suite as a starting point for investi-

gation. The latter includes a note on the variations that appear between versions when you

start to use in-lists to create partitioned views.

PARTITIONED VIEWS—DEPRECATED BUT IMPROVED

Partition views are a deprecated feature—but this is one of those strange cases where the term is deprecated

but the technology is not. The code that used to handle partition views is no longer special, it’s just a bit of

code that handles views—and does it better in 10g than it ever did in Oracle 7, even when parameter

_partition_view_enabled is set to false.

Table 3-2. Boundary Cases with In-Lists

Predicate Cardinality

(8i)

Cardinality

(9i/10g)

month_no = 25 100 100 Ouch

month_no in (4, 4) 100 100 Good

month_no in (3, 25) 192 200 Ouch, but consistent

month_no in (3, 25, 26) 276 300 Ouch, but consistent

month_no in (3, 25, 25, 26) 276 300 Ouch, but consistent

month_no in (3, 25, null) 276 300 Ouch, ouch

month_no in (:b1, :b2, :b3) 276 300 Ouch, ouch, but consistent

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 49

10g Update

It is a hopeless task trying to write a definitive book about the cost based optimizer—it changes

faster than you can write (at least, faster than I can write). Since starting this volume, I have

gone through the 10g beta, 10.1.0.2, 10.1.0.3, and as I write today, I am busy retesting every-

thing on 10.1.0.4 (and 10.2 came out before the book went to print) and in-lists have changed.

In fact, any selectivity outside the low/high range has changed.

Go back to the data set (see script in_list_10g.sql in the online code suite for a special

variant) and try the following queries:

where month_no = 13 -- outside low/high

where month_no = 15 -- outside low/high

where month_no in (13,15) -- two values outside low/high

where month_no in (16,18) -- different 2 values outside low/high

The results you get from 10.1.0.4 are not the same as the results you get from 10.1.0.2, as

demonstrated by Table 3-3.

The calculation that Oracle uses can be represented graphically, as shown in Figure 3-1—

the further away you get from the known low/high range, the less likely you are to find data.

Oracle uses a straight-line decay to predict the variation, decaying to zero when you exceed the

range by the difference between low and high.

We have a range of 11—running from 1 to 12. The right-hand edge hits zero at month_no = 23

(high value + 11); the left-hand edge hits zero at month_no = -10 (low value – 11).

This will be bad news to some people. If you have sequence, or time-based, values in a

commonly queried column and haven’t been keeping the statistics up to date, then queries

that use an equality on that column will have been using a flat line to give you the right answer

as time passes. Now, those same queries are going to give you cardinalities that keep dropping

as time passes—until suddenly, the cardinality gets so low that plans may change dramatically.

Table 3-3. Out-of-Bounds Behavior Changes Within Versions of 10g

Predicate Cardinality

(10.1.0.2)

Cardinality

(10.1.0.4)

month_no = 13 100 91

month_no = 15 100 73

month_no in (13,15) 200 164

month_no in (16,18) 200 109

50 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

Figure 3-1. 10g enhancement of selectivity

Range Predicates
You can put together plenty of variations for testing ranges, as a range can be bounded or

unbounded, open or closed. Using the same basic test data of 100 rows for each of 12 months,

I’ll start with a table of examples (see script ranges.sql in the online code suite) and results

from explain plan, Table 3-4, and discuss the arithmetic afterwards.

Table 3-4. Variations in Cardinality for Range-Based Predicates

Case Predicate Card

(8i)

Card

(9i /10g)

1 month_no > 8 437 436 Unbounded, open

2 month_no >= 8 537 536 Unbounded, closed

3 month_no < 8 764 764 Unbounded, open

4 month_no <= 8 864 864 Unbounded, closed

5 month_no between 6 and 9 528 527 Bounded, closed, closed

6 month_no >= 6 and month_no <= 9 528 527 Bounded, closed, closed

7 month_no >= 6 and month_no < 9 428 427 Bounded, closed, open

8 month_no > 6 and month_no <= 9 428 427 Bounded, open, closed

9 month_no > 6 and month_no < 9 328 327 Bounded, open, open

10 month_no > :b1 60 60 Unbounded, open

11 month_no >= :b1 60 60 Unbounded, closed

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 51

As you can see, the results from 8i, 9i, and 10g are very similar to each other. The only

differences are due to rounding that is sometimes introduced by computational issues and is

sometimes due to something that appears to be a code change in the optimizer’s choice of

rounding.

The cases for bind variables (14–18) where 8i reports the cardinality as 4, rather than 3,

are due to computational errors. The answer should be exactly 3, but in the translation from

decimal to binary and back, a spurious digit has appeared somewhere past the 15th decimal

place. 8i has rounded up; 9i and 10g have rounded to the closest integer.

The other differences occur where the arithmetic produces fractions like 0.36 or 0.27, and

again 8i has rounded up, while 9i and 10g have simply rounded.

CARDINALITY

Any error (or change) in cardinality can have significant side effects in the join order and choice of indexes.

Counterintuitively, a change in cardinality from 4 to 3 is much more likely to have a significant impact on an

execution plan than a change from 537 to 536. Precision for smaller tables (more specifically, smaller result

sets) is very important.

Glancing through the table of results, it is possible to pick out a couple of patterns.

• When we use literals, the difference between open (greater than [>], less than [<]) and

closed (greater than or equal to [>=], less than or equal to [<=]) is exactly 100.

• When we go right outside the legal range of values for the columns (user_tab_col_

statistics.low_value, user_tab_col_statistics.high_value), the cardinality seems to

fix itself at 100.

12 month_no < :b1 60 60 Unbounded, open

13 month_no <= :b1 60 60 Unbounded, closed

14 month_no between :b1 and :b2 4 3 Bounded, closed, closed

15 month_no >= :b1 and month_no <= :b2 4 3 Bounded, closed, closed

16 month_no >= :b1 and month_no < :b2 4 3 Bounded, closed, open

17 month_no > :b1 and month_no < :b2 4 3 Bounded, open, open

18 month_no > :b1 and month_no <= :b2 4 3 Bounded, open, closed

19 month_no > 12 100 100 Unbounded, open

20 month_no between 25 and 30 100 100 Bounded, closed, closed

Table 3-4. Variations in Cardinality for Range-Based Predicates

Case Predicate Card

(8i)

Card

(9i /10g)

52 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

• The values reported for bind variables seem to be rigidly fixed (no difference between

open and closed) and have little to do with realistic possibilities (a range returning 60

rows seems unlikely when an individual value returns 100 rows).

With a little work (and a few follow-up experiments), we can guess the calculations that the

optimizer is probably doing. Taking the second half of the table of results first:

• Cases 10 through 13 (bind variables with unbounded ranges): The optimizer simply

sets the selectivity at 5%. With 1,200 rows (and no nulls), we get 0.05 * 1200 = 60 rows.

• Cases 14 through 18 (bind variables with bounded ranges): The optimizer simply sets

the selectivity at 0.25% (which is actually 5% of 5%). With 1,200 rows (and no nulls), we

get 0.0025 * 1200 = 3 rows.

• Cases 19 and 20 (ranges outside the recorded low/high range): The optimizer detects

that the query falls outside the known range, and seems to return a selectivity, hence

cardinality that would be correct for column = constant. (There is a nasty boundary case,

though, that appears from 9i onwards when every row holds the same value. The script

selectivity_one.sql in the online code suite gives an example.)

BIND VARIABLES AND RANGES

One oddity with bind variables and ranges: you might expect character_col like :bind to be treated the

same way as a between clause, after all, colX like 'A%' looks as if it should be treated like colX >=

'A' and colX < 'B'—which it nearly is. In fact (see script like_test.sql in the online code suite),

when the optimizer sees this comparison with a bind variable, it uses the same 5% selectivity as it does for an

unbounded range—with the usual caveat about the effects of bind variable peeking.

The predicates that use literal values need a little more explanation. The informal, and

approximate, version of the optimizer’s algorithm reads as follows:

Selectivity = “required range” divided by “total available range”

By looking at (user_tab_col_statistics.high_value – user_tab_col_statistics.low_value),

we can calculate that the total range in our example is 11. And as soon as you see the number 11,

you know that something is going to go wrong with our test case. We know that the test case is

about 12 discrete measurements, but the optimizer uses arithmetic that treats the data as if it

were continuously variable values with a total range of 11.

Anything that the optimizer does with small numbers of distinct values is going to have a

critical error built in. (It’s a bit like the problem that young children have with fence posts and

fence panels—why are there 11 posts, but 10 panels? Putting it the grown-up way—how come

there are 11 integers between 30 and 40 when 40 – 30 = 10?)

But how should we apply the algorithm in each of the slightly different cases?

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 53

Case 1

month_no > 8: This is an unbounded (no limit at one end), open (8 is excluded) range.

• Selectivity = (high_value – limit) / (high_value – low_value) = (12 – 8) / (12 – 1) = 4/11

• Cardinality = 1,200 * 4 / 11 = 436.363636 ... hence 437 or 436 depending on whether your

version of Oracle rounds, or rounds up.

Case 2

month_no >= 8: This is an unbounded, closed (includes 8) range, so adjust for closure. The

adjustment is made by including the rows for the closing value—in other words, adding

1/num_distinct. (Again, 8i seems to use the density rather than 1/num_distinct, but this isn’t

something you would notice unless you’ve been hacking the statistics or have a histogram in

place.)

• Selectivity = (high_value – limit) / (high_value – low_value) + 1/num_distinct = 4/11 + 1/12

• Cardinality = 1,200 * (4/11 + 1/12) = 536.363636 ... hence 537 or 536 depending on whether

your version of Oracle rounds, or rounds up.

Cases 3 and 4

Analogous to cases 1 and 2:

• Selectivity (3) = (limit – low_value) / (high_value – low_value) = (8 – 1) / (12 – 1) = 7/11

• Selectivity (4) = (8 – 1) / (12 – 1) + 1/12

Cases 5 and 6

month_no between 6 and 9: Both are bounded (limited at both ends), closed ranges—the between

clause of case 5 is just a convenient shorthand for the two separate predicates of case 6. This

gives us two closing values, so two occurrences of the adjustment.

Selectivity = (9 – 6) / (12 – 1) + 1/12 + 1/12 (>= , <=)

Cases 7, 8, 9

As for case 5, but with one, one, and zero adjustments for the closing value.

Selectivity (7) = (9 – 6) / (12 – 1) + 1/12 (>= , <)

Selectivity (8) = (9 – 6) / (12 – 1) + 1/12 (> , <=)

Selectivity (9) = (9 – 6) / (12 – 1) (> , <)

Although I’ve written out the exact formulae for each case, when I’m working on a problem I

rarely do more than use the quick approximation of requested range / total range. However,

you will appreciate that when there are only a few distinct values for a column, this estimate

could be a long way out—it is a flaw that can have serious repercussions.

Looking at the significance of the total range, you will also appreciate that you could get

some unexpected results if you have an application that uses silly values to avoid nulls.

Consider an application that holds five years’ worth of data (say 1 Jan 2000 to 31 Dec 2004).

What will the optimizer’s calculation for selectivity give for the predicate

where data_date between '01-Jan-2003' and '31-dec-2003'

54 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

Ignoring the adjustments for leap years and boundary details, the answer is going to be

roughly 1/5. If you allow proper nulls in the data_date column, the result is unchanged. But if

your application vendor decides that nulls should not be allowed, and decides to use 31-Dec-

9999 instead, what happens? As soon as a single pseudo-null value goes into the table, the opti-

mizer calculates the selectivity as 1/8,000. (You want one year out of a range of 8,000.) What do

you think is going to happen to your execution plan when the optimizer’s estimate is out by a

factor of 1,600? We will return to this, and similar problems, in Chapter 6.

BIND VARIABLE PEEKING

Bind variables are good for OLTP systems, because they maximize sharable SQL and minimize CPU usage and

latch contention during optimization (see Tom Kyte’s Expert Oracle Database Architecture, Apress, September

2005). But we have just seen that bind variables make a complete nonsense of cardinality calculations. So 9i

introduced bind variable peeking to address this problem.

The first time a piece of SQL is optimized, the optimizer (usually) checks the actual values of any incoming

bind variables, and uses those values to do the optimizer calculations, which means the optimizer has a

chance of picking the best plan for that first execution.

But on every subsequent occasion that a parse call is issued against that statement, and the text is found

to be sharable, the same execution plan will generally be used regardless of any change in the value of the

bind variables. (There is an exception relating to large variations in the lengths the character bind variables.)

In an OLTP system, this is likely to be a good thing, as OLTP activity tends to result in the same high-

precision statements being repeated thousands of times per day, doing the same amount of work each time.

But there are cases, even in an OLTP system, when this can cause problems.

In a DSS system, you usually need to avoid bind variables at all times so that people don’t accidentally

share executions plans for statements that look identical but perform enormously different amounts of work.

And in a mixed environment, you want to make sure that you have a method for avoiding this bind variable trap

for any heavy-duty SQL that you may need to run.

Just to confuse the issue: if you pass a statement with bind variables through explain plan, the optimizer

doesn’t know about any values (or even the bind types), so at best it will use the fixed selectivities to produce

an execution plan. At worst, it will do an incorrect implicit conversion because it is treating something as a

character that might be recognized as, say, numeric at run time, and give you a completely misleading

execution plan.

10g Update

As with equalities, 10.1.0.4 suddenly changes what happens when you fall outside the low/high

limits. The arithmetic, or picture, used for ranges outside the limits is just the same as the new

mechanism we saw for equalities. So you get the sort of effects shown in Table 3-5 (see script

ranges_10g.sql in the online code suite).

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 55

As you can see, the result you get inside the limits doesn’t change, but as you move outside

the range of possible values, the cardinality tapers off instead of using a constant dictated by

the number of distinct values.

Two Predicates
Before you read on, look back at Table 3-4. The predicate month_no > 8 gives a cardinality of

437, and the predicate month_no <= 8 gives a cardinality of 864. Since every row in the table

must meet exactly one or other of these two predicates (given that we have no nulls), what

cardinality do you think the optimizer will return for the following clause?

where

 month_no > 8

or month_no <= 8

There are three possible guesses:

• It will return 1301, because that’s what you get by adding the cardinalities of the two

individual predicates that obviously don’t overlap.

• It will return 1200, because the combined predicate clearly describes all the rows in the

table, and there are 1,200 rows in the table.

• It will return 986, because that was the last test I did in the script ranges.sql, and that’s

what actually happened.

The third argument is always compelling, even when the result is apparently irrational.

And just to make things a touch more confusing, Table 3-6 shows the cardinalities you get on

this query as you change the constant (see script ranges_02.sql in the online code suite).

Table 3-5. Out-of-Bounds Behavior Changes Within Versions of 10g (Reprise)

Predicate Cardinality

(10.1.0.2)

Cardinality

(10.1.0.4)

month_no between 6 and 9 527 527

month_no between 14 and 17 100 82

month_no between 18 and 21 100 45

month_no between 24 and 27 100 1

Table 3-6. Cardinality Varying When You Know It Shouldn’t

Constant Cardinality

1 1,108

2 1,110

3 1,040

56 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

Isn’t there a wonderfully tantalizing hint of symmetry centered on the 6 line; and isn’t it

aesthetically irritating that it’s not quite in the middle of the table? We’ll work out where these

numbers came from in a couple of pages’ time; at the moment I just want to remind you that

the optimizer is not intelligent—it is just a piece of software.

To the human mind, it is obvious that month_no > 8 or month_no <= 8 must return all the

(non-null) entries in the table, but the optimizer code does not include that specific bit of

pattern recognition; all it can see is two predicates with an OR between them.

The fact that the optimizer can recognize the slightly different month_no >= 6 and month_no

<= 9 as a single range on the same column is the result of a deliberate coding choice that stops

it from being interpreted as two predicate clauses with an AND between them. It’s a special

case, and that’s why the optimizer can calculate the (nearly) correct result.

To calculate general combinations of predicates, you need three basic formulae; and for

these formulae, you do need to talk in terms of selectivities, rather than cardinalities.

• The selectivity of (predicate1 AND predicate2) = selectivity of (predicate1) * selectivity

of (predicate2).

• The selectivity of (predicate1 OR predicate2) = selectivity of (predicate1) + selectivity of

(predicate2) minus selectivity of (predicate1 AND predicate2) ... otherwise, you’ve

counted the overlap twice.

• The selectivity of (NOT predicate1) = 1 – selectivity of (predicate1) ... except for bind

variable problems.

Let’s go back to our audience of 1,200 as a concrete example of what these statements mean.

Imagine the audience has traveled from all over the European Union (as of 1 September 2003) to

hear me speak. That means they come from 15 different countries—and we will assume that

the nationalities are randomly distributed (see script two_predicate_01.sql in the online

code suite).

Instead of asking for everyone born in December to raise their hands as I did in the first

example, I ask only the Italians born in December to raise their hands. How many should I see?

I expect 100 people to be born in December (1 in 12); but that group of 100 comes from

4 989

5 959

6 948

7 957

8 986

9 1,035

10 1,103

11 1,192

12 1,200

Table 3-6. Cardinality Varying When You Know It Shouldn’t (Continued)

Constant Cardinality

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 57

15 countries, so only 1 in 15 of that group is likely to come from Italy. Since 100 / 15 = 6.5, I

expect 6 or 7 people to raise their hands.

In SQL terms, I have predicate1 as month_no = 12 (selectivity = 1/12) and predicate2 as

eu_country = 'Italy' (selectivity = 1/15). The formula says that the combined selectivity is

(1 / 12) * (1 / 15). The formula is simply stating algebraically the arithmetic we’ve just worked

out intuitively for our audience.

What about the or case? Let’s ask for people born in December or born in Italy to raise their

hands. Of these, 1 in 12 were born in December (100), and 1 in 15 were born in Italy (80), so a

first approximation says that 180 hands go up.

But if we stop there, we are going to count some people twice—the people who were born

in December in Italy—so we have to subtract them from our total. That’s easy because we’ve

just worked out that the fraction of the audience born in December in Italy is (1 / 12) * (1 / 15).

So the fraction of the audience we want is (1 / 12) + (1 / 15) – (1 / 12) * (1 / 15): just as the

formula says.

Finally, how about the people who were not born in December? Since 1/12 of the audience

was born in December, it’s obvious that 11/12 of the audience was not born in December. And

again, our formula is simply stating the normal mental arithmetic: fraction not born in

December = 1 – fraction born in December.

Those of you who are familiar with probability theory will have recognized the three

formulae as the standard formulae for calculating the combined probabilities of independent

events:

• Probability(A AND B occur) = Probability(A occurs) * Probability(B occurs)

• Probability(A OR B occurs) = Probability(A occurs) + Probability(B occurs) – Probability

(A AND B occur)

• Probability(NOT(A occurs)) = 1 – Probability(A occurs)

This equivalence is not really surprising. The probability of an event occurring is (loosely)

the fraction of times it has occurred in previous tests; the selectivity of a predicate is (loosely) the

fraction of rows in the table that match the predicate.

STRANGE BIND SELECTIVITIES

You may have wondered why the selectivity of month_no between :b1 and :b2 is fixed at 0.0025. It’s

because the optimizer treats it as two predicates with an AND.

The selectivity invented for month_no > :b1 is fixed at 0.05, the selectivity invented for month_no <

:b2 is the same; so the selectivity of both predicates being true is: 0.05 * 0.05 = 0.0025 (see script

bind_between.sql in the online code suite).

The selectivity of not (column > :b1) is a special case as well: it is 0.05, not 0.95. The optimizer

respects the intention that any test of an unbounded range scan on a column should return 5% of the data.

This problem gets even stranger when you use not(month_no between :b1 and :b2). The value

that the optimizer uses is 9.75% because the predicate is equivalent to (month_no < :b1 or month_no

> :b2)—which should be 5% plus 5%, except the optimizer subtracts 0.25%, emulating the “subtract the

overlap” strategy of a more general OR clause.

58 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

Problems with Multiple Predicates
I’d like to finish this chapter by doing two things with the general formulae for combining pred-

icates. First I’d like to walk through the arithmetic that lets the optimizer calculate a cardinality

of 986 on a clause that clearly covers exactly 100% of the rows in our 1,200 row table. Then I’d

like to show you why the formulae that the optimizer uses are guaranteed to produce the

wrong figures in other, more realistic, cases.

Let’s dissect the where clause:

where

 month_no > 8 -- (predicate 1)

or month_no <= 8 -- (predicate 2)

• From our single selectivity formula, (required range / total range), we calculate the

selectivity for predicate1, month_no > 8, as (12 – 8) / (12 – 1) = 4 / 11 = 0.363636.

• Similarly, the selectivity for predicate2, month_no <= 8, is (8 – 1) / (12 – 1) + 1/12 = 7/11 +

1/12 = 0.719696.

• Our formula for selectivity(P1 OR P2) is selectivity(P1) + selectivity(P2) – selectivity(P1 AND

P2), so the combined selectivity is 0.363636 + 0.719696 – (0.363636 * 0.719696) = 0.8216.

• Multiply this selectivity by the 1,200 rows in the table, round up, and you get 986, exactly

as we saw in Table 3-6. It’s clearly the wrong answer for reasons that are intuitively

obvious to the human mind. But the machine is not human—it follows the code, it

doesn’t understand the situation.

In fact, this error is just a special case of a more general problem, which I will introduce by

going back one last time to my audience of 1,200 people.

Assume everyone in the audience knows which star sign they were born under (I know that

astrology is not a topic that should appear in a book that’s trying to be scientific, but it does

provide a convenient demonstration).

If I ask all the people born under Aries to raise their hands, I expect to see 100 hands—there

are 12 star signs, and we assume uniform distribution of data—selectivity is 1/12, cardinality is

1,200/12 = 100.

If I ask all the people born in December to raise their hands, I expect to see 100 hands—

there are 12 months, and we assume uniform distribution of data—selectivity is 1/12, cardi-

nality is 1,200/12 = 100.

How many people will raise their hands if I ask for all the people born under Aries and in

December to raise their hands? What about all the people born under Aries in March? What

about all the people born under Aries in April?

According to Oracle, the answer will be the same for all three questions:

• Selectivity (month AND star sign) = selectivity (month) * selectivity (star sign) =

1/12 * 1/12 = 1/144

• Cardinality = 1,200 * 1/144 = 8.5 (rounded to 8 or 9 depending on version of Oracle)

But the star sign Aries extends from 21 March to 19 April—so there can’t be any people

born in December under Aries; about 35 of the 100 people born in March will be under Aries,

and about 65 of the 100 people born in April will be under Aries. Star signs and calendar dates

C H A P T E R 3 ■ S I N G LE T A B L E S E L E C T I V I T Y 59

are not independent, but Oracle’s formulae for calculating combinations of predicates assume

that the predicates are independent.

As soon as you apply multiple predicates to a single table, you need to ask whether there is

some dependency between the columns you are testing. If there is a dependency, the opti-

mizer will produce incorrect selectivities, which means incorrect cardinalities, which could

easily mean inappropriate execution plans.

IN-LISTS REVISITED

Remember how 8i underestimated the cardinality of an in-list. We expected a cardinality of 300 from

month_no in (6,7,8) but got a cardinality of 276. When you expand the formula for the selectivity of two

predicates OR’ed together to cover three predicates, it looks like this:

sel(A or B or C) =

sel(A) + sel(B) + sel(C) – Sel(A)sel(B) – Sel(B)sel(C) – sel(C)sel(A) + Sel(A)Sel(B)Sel(C)

The individual selectivity for each month is 1/12, but put 1/12 into the preceding formula, and the answer

is: 3/12 – 3/144 + 1/1728 = 0.22975. Multiply this by the 1,200 rows we started with and the answer is

275.69—the cardinality given by 8i.

Oracle’s error in 8i was that it used the general method for handling OR’ed predicates when it expanded

in-lists; it didn’t recognize the special case. It’s a common feature in the optimizer—many of the enhance-

ments that appear in newer versions are the result of special cases being recognized, and being treated more

appropriately. Enhancements are a good thing—but anything that changes the cardinality of an operation

(even to correct it) may cause an execution plan to change unexpectedly.

Notice particularly that the same query with different inputs could mean that the standard

cardinality estimate is too high (Aries and December) or too low (Aries and April). This means

the problem of dependencies, particularly between columns in a single table, is not one that

can be solved automatically. 9i offers dynamic sampling as a partial solution, and 10g offers

profiles—we will take a further look at both options in Chapter 6.

But since the error in cardinality could go either way on exactly the same input text, the

only complete solution requires Oracle to optimize for each set of input values as they appear

by sampling the data. This may be feasible in a data warehouse environment, but is not viable

in a high-performance OLTP system because of the extra resource consumption and contention

issues that would inevitably appear.

Summary
To estimate the number of rows returned by a set of predicates, the optimizer first calculates

the selectivity (fraction of data to return) and then multiplies it by the number of input rows.

For a predicate on a single column, the optimizer uses either the number of distinct values

or the density as the basis for calculating the selectivity of an equality predicate. For range-

based predicates on a single column the optimizer bases the selectivity on the fraction range

required / total available range with some adjustments for end-point values.

For range predicates involving bind variables, the optimizer uses hard-coded constants

for the selectivity—5% (0.05) for unbounded ranges, 0.25% (0.0025) or 9.75% (0.975) for

bounded ranges.

60 C H A P T E R 3 ■ S I N G L E T A B L E S E LE C T I V I T Y

The optimizer combines predicates by using the formulae for calculating the probability

of independent events. This can lead to errors in selectivity (hence cardinality) when the pred-

icates involve columns containing data sets that are not independent of each other.

Queries involving in-lists display some idiosyncratic behavior. The treatment of “in” and

“not in” are self-consistent (and wrong) in 8i. The treatment of “in” is corrected in 9i and 10g,

but will give misleading results for a list with bind variables, or values outside the expected

range of values for the column. The treatment of “not in” is still incorrect in 9i and 10g, using

the same calculation that 8i uses.

Test Cases
The files in the download for this chapter are shown in Table 3-7.

Table 3-7. Chapter 3 Test Cases

Script Comments

birth_month_01.sql Coded equivalent of baseline example

hack_stats.sql Framework script to allow you to modify some object-level statistics

birth_month_02.sql Adds null values to the baseline example

in_list.sql Queries with different-sized in-lists against the baseline example

in_list_02.sql Queries with different-sized in-lists against the modified example

oddities.sql Collection of in-list queries that produced some undesirable results

in_list_03.sql Queries with in and not in against the baseline example

pv.sql Partition views and in-lists (versions vary significantly)

in_list_10g.sql Demonstration of changes in 10.1.0.4 specifically

ranges.sql Queries with different types of ranges against the baseline example

selectivity_one.sql Demonstration of a boundary case for tests outside the
low/high range

like_test.sql Example of predicate character like :bind

ranges_10g.sql Demonstration of changes in 10.1.0.4 specifically

ranges_02.sql Oddity with column < X or column >= X

two_predicate_01.sql Test case for two independent predicates

bind_between.sql Anomalies when handling range predicates with bind variables

setenv.sql Sets a standardized environment for SQL*Plus

61

■ ■ ■

C H A P T E R 4

Simple B-tree Access

In this chapter, we will examine the arithmetic the optimizer uses to calculate the cost of using

a simple B-tree index to access a single table. The investigation will not be exhaustive, and will

focus only on the general principles, skimming over the numerous special cases where the

optimizer “tweaks” the numbers a little.

I shall basically be covering range scans, including full scans and index-only scans, with a

brief mention of unique scans. There are other uses of indexes, of course—we have already

seen fast full scans in Chapter 2, and we will be exploring skip scans, and index joins in volumes 2

and 3.

This chapter requires you to be familiar with the concept of selectivity and how the optimizer

calculates it, so you may want to read Chapter 3 before you start in on this one.

Basics of Index Costing
As you have seen in the earlier chapters, the cost of a query is a measure of time to completion,

and one of the most significant factors in the time required is the number of real, physical I/O

requests that have to be satisfied. This shows up very clearly in the basic formula for the single-

table indexed access path.

Before quoting the formula, though, it is worth creating a mental image of what you would

do to walk through a typical index access path.

• You have predicates on some of the columns that define the index.

• You locate the root block of the index.

• You descend through the branch levels of the index to the leaf block that is the only

place for the first possible entry (the start key) that could match your predicates.

• You walk along a chain of leaf blocks until you overshoot the entry that is the last

possible entry (the stop key) that could match your predicates.

• For each index entry, you decide whether or not to visit a table block.

So the formula for the cost of accessing a table by way of an index ought to cover three

block-related components: the number of branch levels you descend through, the number of

leaf blocks you traverse, and the number of table block visits you make. And as we know, the

optimizer assumes that a single block visit equates to a real I/O request—so the number of

block visits is the cost (if you have not enabled CPU costing).

62 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

SKIP SCANS

Because index leaf blocks contain forward and backward pointers, the standard range scan mechanism for

using an index only has to descend through the branch levels once to find a starting block (whether the range

scan is ascending or descending).

The mechanics of a skip scan (which will appear in a later volume) require Oracle to go up and down the

branch levels. Not only is the arithmetic different, but the strategy for pinning buffers changes too. Every block

in the path from the root block to the current leaf seems to be pinned as the leaf is scanned—after all, you

don’t want someone else to split your buffered copy of a branch block if you’re going to go back up to it almost

immediately.

The thing I call the baseline formula for index costing was first made public in a paper by

Wolfgang Breitling (www.centrexcc.com) at IOUG-A in 2002. This formula is made up of exactly

the three components I’ve just described:

cost =

 blevel +

 ceiling(leaf_blocks * effective index selectivity) +

 ceiling(clustering_factor * effective table selectivity)

• The first line of the formula represents the number of block visits needed to descend

through the index (excluding the cost of actually hitting the first leaf block you want).

Oracle implements a version of Balanced B-trees, so every leaf block is the same distance

from the root block, and we can talk about the height of the index quite safely. The number

of layers of branch blocks you have to descend through is the same whichever leaf block

you want to get to.

• The second line of the formula represents the number of leaf blocks that you will have to

walk along to acquire all the rowids matching a given set of input values. The effective

index selectivity corresponds to the entry labelled ix_sel in the 10053 trace file.

• The third line represents the number of visits to table blocks that you will have to make

to pick up the rows by way of the selected index. The effective table selectivity corresponds to

the thing that used to be labelled tb_sel in the 10053 trace file, but ends up being labelled

(more accurately) as ix_sel_with_filters in the 10g trace file. This line often generates

the biggest component of the cost, and introduces the biggest error in the calculation of

the cost of using a B-tree index. We will examine various causes and corrections for the

errors in Chapter 5.

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 63

INDEX HEIGHT

There are still several documents and presentations doing the rounds that talk about sequence-based indexes

spawning extra levels on the right-hand side. This does not happen. When leaf blocks split, the split travels

upwards, if necessary, not downwards. All the leaf blocks in a Balanced B-tree will be at the same distance

from the root.

I recently came across a paper that described a mechanism used by RDB for adding overflow nodes for

repeated nonunique keys. If this description is actually correct, it’s possible that the misunderstanding about

Oracle’s implementation arrived as a side effect of individuals migrating from one platform to another and

assuming that their previous knowledge was still relevant.

The blevel, leaf_blocks, and clustering_factor are available in the view user_indexes

once you’ve collected statistics. The effective index selectivity and effective table selectivity are

calculated at optimization time based on the incoming predicates. We will investigate how the

two selectivities are calculated in a worked example.

So the optimizer estimates the number of block visits, assumes that each block visit will

turn into an I/O request—and that’s basically the cost. There are numerous special cases, lots

of side effects from tweaking parameters and hacking statistics, and some anomalies due to

bugs and enhancements in different versions of the code. And with 9i and its CPU costing, we

also have to add in a CPU component for each block visited and yet another CPU component

for examining the data.

Getting Started
Let’s build an example so that we can see the different bits of this formula in action. As usual,

my demonstration environment starts with an 8KB block size, 1MB extents, locally managed

tablespaces, manual segment space management, and system statistics (CPU costing) disabled.

This sample is taken from script btree_cost_01.sql in the online code suite:

create table t1

as

select

 trunc(dbms_random.value(0,25)) n1,

 rpad('x',40) ind_pad,

 trunc(dbms_random.value(0,20)) n2,

 lpad(rownum,10,'0') small_vc,

 rpad('x',200) padding

64 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

from

 all_objects

where

 rownum <= 10000

;

create index t1_i1 on t1(n1, ind_pad, n2)

pctfree 91

;

A couple of oddities about this data may need a little explanation. First, the pctfree setting

on the index is unusually large; I’ve done this to force the index to spread itself across a large

number of leaf blocks when it is first created. But pctfree does not apply to branch blocks—

which is why I have introduced ind_pad as the second column of the index. Because this holds

the same value for all rows, it doesn’t affect the overall statistics and distribution, but it does

stop Oracle from being able to pack lots of rows into each branch block, which conveniently

pushes the index up to a blevel of 2.

PCTFREE FOR INDEXES

When applied to indexes, the pctfree storage parameter has a somewhat different meaning than it has for

tables. For indexes, pctfree is only relevant as an index is created, rebuilt, or coalesced; and it only applies

to leaf blocks.

For a table, the pctfree storage parameter tells Oracle when to stop inserting new rows into a block,

so that some space in each block can be left for updates to existing rows in that block. But entries in indexes

are never updated—when you change an index entry it (usually) belongs somewhere else in the index, thus

an update to an index is really a delete followed by an insert—so you don’t reserve space for updates, you

reserve space for new rows.

Note that n1 is specified in a way that will produce 25 different values (0 to 24), and n2 is

specified to produce 20 different values (0 to 19). Because of the random distribution, we are

likely to see all 500 different possible combinations of numbers, with about 20 rows per combi-

nation (10,000 rows divided by 500 combinations).

After using the dbms_stats package to compute statistics on the table and index, you

should get the results shown in Table 4-1.

Table 4-1. Statistics for the Sample Table and Its Index

Statistic Value

Table rows 10,000

Table blocks (below the high water mark) 371

Index rows (entries) 10,000

Index leaf blocks 1,111

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 65

Now switch on autotrace and run the following query. Autotrace under 9i or 10g should

report the execution plan that follows this query.

select

 small_vc

from

 t1

where

 n1 = 2

and ind_pad = rpad('x',40)

and n2 = 3

;

Execution Plan (Autotrace 9.2.0.6 & 10.1.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=25 Card=20 Bytes=1160)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=25 Card=20 Bytes=1160)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=5 Card=20)

In this query, the optimizer chooses an index and reports a cost of 25, with a cardinality of

20. We know that the cardinality happens to be a good estimate, but where does the cost come

from? The first part of the cost comes from line 2 (Cost = 5) for visiting the index, and the next

part (Cost = 25, an increment of 20) comes from line 1 for visiting the table.

Index blevel (number of branch levels) 2

Index distinct keys 500

Index clustering factor 9,745

Index average leaf blocks per key 2

Index average data (table) blocks per key 19

Column n1 distinct value 25

Column n1 number of nulls 0

Column n1 density 0.04

Column n2 distinct values 20

Column n2 number of nulls 0

Column n2 density 0.05

Column IND_PAD distinct values 1

Column IND_PAD number of nulls 0

Column IND_PAD density 1.00

Table 4-1. Statistics for the Sample Table and Its Index

Statistic Value

66 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

Informally, we shouldn’t be surprised that the cost of visiting the table was 20. We were

expecting about 20 rows and knew that those rows were scattered all around the table. So we

can accept that the incremental cost of 20 in the table line relates to the 20 different blocks that

we will have to visit to acquire those 20 different rows.

Similarly, when we see the cost of using the index was 5, we might allocate two units to

walking down the branch levels (the blevel of the index was 2). But that leaves three more units

to account for—perhaps the optimizer has estimated that we will walk three leaf blocks to get

the 20 rowids we need.

An informal argument is fine as a starting point, but if we want to investigate the formula

and understand the optimizer’s use of indexes a little better, we now need to know the signifi-

cance of the two selectivities and the clustering_factor.

Effective Index Selectivity

In Chapter 3, I described the selectivity as the fraction of the rows that the optimizer expected

to find based on the predicates supplied. But now I have raised the stakes to two selectivities,

the effective index selectivity and the effective table selectivity.

The principle is exactly the same, though. Forget about the table for a moment; what fraction

of the row entries in the index will we return if we use the three predicates from the query? All

three predicates are on columns in the index, so we investigate all three of them, starting with

their density or num_distinct:

n1 = {constant} (Target: 1 row in 25, or 4% of the rows, or 0.04 * number of rows)

ind_pad = {constant} (Target: 100% of the rows)

n2 = {constant} (Target: 1 row in 20, or 5% of the rows, or 0.05 * number of rows)

Apply the formula from Chapter 3 for combining selectivities:

selectivity (P and Q) = selectivity(P) * selectivity(Q)

But we have three events—so we have to extend the formula a little:

selectivity (X and Y and Z) =

selectivity((X and Y) and Z) =

selectivity(X and Y) * selectivity(Z) =

selectivity(X) * selectivity(Y) * selectivity(Z)

We simply multiply together all three selectivities. In this case, the effective index selectivity

is 0.04 * 1 * 0.05 = 0.002 (remember this figure for later). Our predicates will require us to visit

0.2% of the entries in the index. The thing about indexes, though, is that their leaf blocks are

packed in sorted order. If we work out that we are going to examine X% of the index rows, then

we are going to walk along X% of the leaf blocks to do so. This is why one component of the cost

is leaf_blocks * effective index selectivity.

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 67

At this point, you may want to stop me and point out an oddity. The view user_indexes has

a column called distinct_keys—which is where I got the value of 500 for my list of statistics a

couple of pages ago. The optimizer “knows” that this index has 500 distinct entries, and I’ve

just put in a query for

(every index column) = {constant}

Why doesn’t the optimizer simply say there are 500 possible sets of values in the index, you

want one possible set of values, so the selectivity is 1/500 = 0.002?

Good question, and a perfectly sensible suggestion. But generally the optimizer really does

multiply up the separate selectivities, rather than looking at the combined index selectivity.

(There seems to be just one special case that we will examine in Chapter 11.) Don’t forget,

though, that Oracle records both a density and num_distinct for each column. Perhaps the

strategy of multiplying the separate column selectivities is a generic solution that allows for

skewed data when there are histograms in place and the number of distinct values in the index

cannot be trusted.

Effective Table Selectivity

We already know how to calculate selectivities on tables; and it’s especially easy for the case

where all the table-related predicates are AND’ed together. We just multiply the individual

selectivities together.

But there is a refinement you have to consider when you are evaluating indexes. Imagine

my sample query includes the extra predicate small_vc = '0000000001'. If you choose to visit

the table by way of the existing index, you cannot check this final predicate until after you have

reached the table—so this predicate does not affect the fraction of the data that you are going

to visit, only the fraction of data that you are finally going to return.

When working out the cost of using an index, the effective table selectivity should be based

only on those predicates that can be evaluated in the index, before you reach the table. (This is

why I have termed it effective table selectivity rather than simply table selectivity and why 10g

release 2 has relabelled it as the ix_sel_with_filters.)

In this case, the predicates we have on the table can all be resolved in the index, so we can

safely say that the effective table selectivity is (also) 0.04 * 1 * 0.05 = 0.002.

clustering_factor

The clustering_factor is a measure that compares the order of the index with the degree of

disorder in the table. The optimizer appears to calculate the clustering_factor by walking the

table in index order and keeping track of how many times the walk jumped from one table

block to another. (Of course, it doesn’t really work like this; the code simply scans the index

extracting table block addresses from rowids.) On every jump, a counter is incremented—the

final value of the counter is the clustering_factor. Figure 4-1 illustrates the principle.

68 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

Figure 4-1. Calculating the clustering_factor

In Figure 4-1, we have a table with four blocks and 20 rows, and an index on the column V1,

whose values are shown. If you start to walk across the bottom of the index, the first rowid

points to the third row in the first block. We haven’t visited any blocks yet, so this is a new

block, so we count 1. Take one step along the index, and the rowid points to the fourth row of

the second block—we’ve changed block, so increment the count. Take one step along the

index, and the rowid points to the second row of the first block—we’ve changed block again, so

increment the count again. Take one step along the index, and the rowid points to the fifth row

of the first block—we haven’t changed blocks, so don’t increment the count.

In the diagram, I have put a number against each row of the table—this is to show the

value of the counter as the walk gets to that row. By the time we get to the end of the index, we

have changed table blocks ten times, so the clustering factor is 10.

Notice how small clumps of data stop the clustering_factor from growing—look at block 2

where the value 8 appears four times because four consecutive entries in the index point to the

same block; the same effect shows up in block 3 to give three rows the value 6.

The table doesn’t have to be completely sorted for this type of thing to happen; it only

needs to have little clumps (or clusters) of rows that are nearly sorted—hence the term

clustering_factor, rather than sort_factor.

Given the way the clustering_factor is calculated, you will appreciate that the smallest

possible value has to be the same as the number of blocks in the table, and the largest possible

value has to be the same as the number of rows in the table—provided you have computed

statistics.

If there are lots of blocks like block 2 in the table, the clustering_factor will turn out to be

quite close to the number of blocks in the table, but if the data in the table is randomly scattered,

the clustering_factor will tend to come out close to the number of rows in the table.

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 69

INDEXES AND THE CLUSTERING FACTOR

Historically it has been common practice to say that a good index has a low clustering_factor, and a bad

index has a high clustering_factor.

There is obviously a degree of truth in this comment, especially in the light of what the clustering_factor

represents. However, I have always had an aversion to words like low, high, small, large, and expressions like close

to zero, when talking about Oracle. After all, is 10,000 a low clustering_factor or a high clustering_

factor? It’s low if you have 10,000 blocks in your table, and high if you have 100 blocks in your table. So you

might want to write a couple of little scripts that join user_tables to user_indexes (and other scripts for

partitioned tables, etc.) so that you can compare the critical figures.

In fact, for reasons I describe in Chapter 5, I often use the column avg_data_blocks_per_key to get

an idea of how good Oracle thinks the index is.

So why does the clustering_factor feature in the formula for costing? When you acquire

more than one row from a table through an index (in other words, when you are going to do an

index range scan), you walk a section of the index—call it X% of the index. As you walk the

index, you will be hopping around the table from row to row. If the clustering_factor is truly

representative of the way that the data is scattered around the table, then as you walk X% of the

index, the number of times you change table block will be X% of clustering_factor.

The optimizer behaves as if every change of block takes you to a block that you have not

previously visited, which will therefore require an I/O request. This may be a fairly reasonable

assumption in some cases, and explains why clustering_factor * effective table selectivity

(rounded up) appears as the final component of the cost.

There are flaws in the argument, of course, and we shall examine them in more detail in

Chapter 5. Consider, for example, the first table block in Figure 4-1. If we execute a query that

uses the index to visit all five rows in that block, the optimizer will have allowed for three

physical I/O requests to that specific block in its cost calculation (there are three visit numbers in

the block). But the block will probably be buffered (and possibly pinned) for all visits after the

first one. It is quite common for this part of the formula to produce a value that does not reflect

reality. In fact, thanks to a table pre-fetch mechanism that appeared in 9i (see Chapter 11),

there is likely to be an ever-increasing difference between the calculated costs and actual block

visits in increasing numbers of cases.

Putting It Together

We have the formula for the cost of an index-driven access path as

cost =

 blevel +

 ceiling(leaf_blocks * effective index selectivity) +

 ceiling(clustering_factor * effective table selectivity)

70 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

We know what each of the terms represents, so we can check our simple example to see

whether the formula gives us the right answer—in other words, whether it provides the

numbers we see in the autotrace output. Let’s just slot in the numbers from our first test:

blevel = 2

Effective index selectivity = 0.002 (As calculated previously)

leaf_blocks = 1,111

Effective table selectivity = 0.002 (As calculated previously)

clustering_factor = 9,745

Table rows = 10,000

So, according to the formula, the cost should be

 2 + ceiling(1,111 * 0.002) + ceiling(9,745 * 0.002) =

 2 + ceiling(2.222) + ceiling(19.49) =

 2 + 3 + 20 =

 5 + 20 =

 25

Compare this with the execution plan, where the cost on the index line was 5 (which we

hypothesized was 2 for descending the branches and 3 for walking the leaf blocks) and the total

cost was 25. The correspondence is perfect.

So the formula seems to be sound for this simple case; the results of the arithmetic match

the figures produced by the execution plan listing. So what does it tell us specifically about the

optimizer’s perceived cost of using B-tree indexes?

Practical experience tells us that the blevel is typically 3 or less, often 2, occasionally 4;

that indexes tend to be densely packed; that index entries tend to be smaller than table rows,

so leaf blocks usually hold far more entries than the corresponding table blocks; and that the

number of leaf blocks in an index is often small compared to the number of blocks in the table.

So, for any set of predicates targeting more than three or four rows in the table, the most signif-

icant component in the cost calculation is quite likely to depend on the clustering_factor—

i.e., how randomly scattered the target data appears to be.

If the optimizer thinks the data in your table is well clustered, then the cost will be low,

favoring the use of indexes. If the optimizer thinks the data in the table is very scattered, then

the cost will be higher, favoring the use of alternative execution plans (such as tablescans).

Counterintuitively, the state of your table can have a much bigger impression on the optimizer’s

calculations than the state of the index itself.

Of course, if your data really is distributed the way the optimizer thinks it is, then the cost

calculation will often come close to a realistic run-time use of resources, and you will think the

optimizer has done a good job. If the clustering_factor doesn’t represent the real distribu-

tion, then the cost calculation will be wrong, and the optimizer is likely to choose an unsuitable

execution plan.

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 71

REBUILDING INDEXES

You can often reduce the number of leaf_blocks (and, very occasionally, the blevel) of an index by

rebuilding the index; but rebuilding an index has no effect on the clustering_factor.

Rebuilding an index may make that index appear more desirable to the optimizer, but the side effects

may be good or bad. On the plus side, rebuilding an index may introduce a caching benefit for that index at

query time—but the downside is a possible contention penalty on DML, combined with an increase in leaf

blocks splits and redo generated as the index “tries” to get back to its equilibrium state. Counterintuitively,

an index may end up “needing” regular rebuilds because you’ve started to rebuild it regularly (see script

rebuild_test.sql in the online code suite for an artificial example demonstrating the concept).

If you want to get the optimizer to behave properly, it is usually more important to check whether or not

the clustering_factor represents the real data scattering and do something about that, rather than simply

wedging the index into a tighter hole.

Extending the Algorithm

Let’s take a look at some more general examples of costing. For example:

• How do you handle range-based tests (e.g., n2 between 1 and 3)?

• How do you handle partial use of a multicolumn index?

• What effects do in-lists have?

• How special is an index full scan?

• What does the optimizer do when you don’t have to visit the table?

How Do You Handle Range-based Tests (e.g., n2 between 1 and 3)?

Let’s try it and see. Try running the following query (btree_cost_02.sql in the online code

suite) against our base data set with autotrace enabled:

select

 /*+ index(t1) */

 small_vc

from

 t1

where

 n1 = 2

and ind_pad = rpad('x',40)

and n2 between 1 and 3

;

72 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

Execution Plan (9.2.0.6 and 10.1.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=93 Card=82 Bytes=4756)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=93 Card=82 Bytes=4756)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=12 Card=82)

You’ll note that I’ve had to include an index hint with this statement, as the cost of using

the index is rather higher than the cost of a tablescan. (The number of blocks below the table’s

high water mark was 371, and my setting for db_file_multiblock_read_count was 8, so in the

absence of CPU costing, 9i calculated the tablescan cost as 1 + 371 / 6.588 = 58.)

As ever, we need to think about selectivity. The individual selectivities on columns ind_pad

and n1 are unchanged at 1 and 0.04 respectively, but we now have a range-based predicate on

n2. Referring to Chapter 3, we can pull out the formula for the between predicate:

selectivity (n2 between 1 and 3) =

 required range / total range + 1/num_distinct + 1/num_distinct =

 (3 – 1) / (19 – 0) + 1/20 + 1/20 = 0.205263

As with the previous example, every predicate applies to both the index and the table, so

this number can be used in both places in the formula. Slotting the numbers in, then, we get

the following:

 Effective index selectivity = 1 * 0.04 * 0.205263 = 0.0082105

 Effective table selectivity = 1 * 0.04 * 0.205263 = 0.0082105

 Cost = 2 +

 ceiling(1,111 * 0.0082105) + -- 10

 ceiling(9,745 * 0.00082105) -- 81

 = 12 (index line of plan) + 81 = 93 -- as required

There was one little glitch in this test that I haven’t disclosed. I labelled the execution plan

with “(9.2.0.6 and 10.1.0.4)”. When I repeated the test under 8i, there was a small difference—

the cardinality changed from 82 to 83.

The calculated cardinality is defined as

Input rows * calculated selectivity

10,000 * 0.00882105 = 82.105 -- should this be 82, or 83?

This is actually something we have seen before in Chapter 3. 8i always seems to round

cardinality up (the ceiling() function, or as SQL puts it, the ceil() function), but 9i and 10g

round to the nearest whole number (the round() function).

More on Range-based Tests

We took the easy option, and did a range-based test on the last column in the index. What

happens if we do a range-based test on an earlier column in the index? Try this, for example:

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 73

alter session set "_optimizer_skip_scan_enabled"=false;

select

 /*+ index(t1) */

 small_vc

from

 t1

where

 n1 between 1 and 3

and ind_pad = rpad('x',40)

and n2 = 2

;

Execution Plan (8.1.7.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=264 Card=82 Bytes=4756)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=264 Card=82 Bytes=4756)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=184 Card=82)

Execution Plan (9.2.0.6 and 10.1.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=264 Card=82 Bytes=4756)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=264 Card=82 Bytes=4756)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=184 Card=1633)

The alter session command is there for the benefit of 9i and 10g. The unhinted execution

plan was a full tablescan, but when I first put in an index hint, the optimizer insisted on using

the index skip scan mechanism, and in 10g if I then included the no_index_ss() hint, the index

was disabled and the plan went back to a tablescan (I would be inclined to call this behavior a

bug—it seems perfectly reasonable to me to say, “Use this index, but don’t do a skip scan,” but

it is possible that it’s the specified behavior).

An important point to note is that the cardinality of this execution plan matches what we

saw in the previous query (82), but the cost is very much greater (264 instead of 93). Let’s try to

use the formula in the standard way, and see what happens.

• The selectivity for column n1 is (3 – 1) / (24 – 0) + 2/25 = 0.1633333.

• The selectivity of ind_pad is still 1.

• The selectivity of n2 is still 0.05.

So we can produce a combined selectivity of 1 * 0.1633333 * 0.05 = 0.0081667 (and multi-

plying this by the number of rows in the table and rounding we get 82, as the plan says).

If we slot this value for the selectivity into both places in the formula, what results do we get?

74 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

 Cost = 2 + -- blevel

 ceiling(0.0081667 * 1,111) + -- 10

 ceiling(0.0081667 * 9745) -- 80

 = 92 -- what's gone wrong,

 -- the answer should be 264!

Looking back at the execution plan, we see that the index line reports a cost of 184, and the

table line reports a cost of 264, a difference of 80, which is what we get from the clustering

portion of the formula. This suggests that it is the bit involving the index leaf block factor that

has gone wrong.

The cardinality on the index line of the 9i/10g plan gives us the clue—the optimizer is

telling us that it is going to examine 1,633 entries from the index, a huge fraction of the index.

Why is this? Because as soon as we have a range scan on a column used somewhere in the

middle of an index definition or fail to supply a test on such a column, the predicates on later

columns don’t restrict the selection of index leaf blocks that we have to examine.

This is why we have two selectivities in our formula, the effective table selectivity (which

combines all predicates available on the index’s columns) and the effective index selectivity

(which may have to use a subset of the predicates based on the index’s leading columns).

In this case, the effective index selectivity has to be calculated from the predicate on just the

n1 column. Because the test on n1 is range-based, the predicates on index_pad and n2 do not

restrict the number of index leaf blocks we have to walk. Of course, when we finally get to

examine an index leaf row, we can use all three predicates to check whether we should go to the

table, so the effective table selectivity still includes all three individual column predicates.

So the effective index selectivity is 0.1633333 (the selectivity we calculated previously for

column n1), and the final cost formula is

 Cost = 2 + -- blevel

 Ceiling(0.1633333 * 1,111) + -- 182

 Ceiling(0.0081667 * 9745) -- 80

 = 184 + 80 = 264 -- as expected

This result confirms a well-known guideline for arranging the columns in a multicolumn

index. Columns that usually appear with range-based tests should generally appear later in the

index than columns that usually appear with equality tests. Unfortunately, changing the column

ordering in an index can have other contrary effects, which we will examine in Chapter 5.

EXPLAIN PLAN ENHANCEMENTS

9i introduced two very important columns to the plan_table for supporting explain plan. These are the

filter_predicates and access_predicates, which tell you exactly how, and where, the optimizer

thinks it is going to use the components of your where clause.

If you are not making effective use of an index, the index line of an execution plan will highlight the

problem very clearly. The access_predicates column will list the predicates being used to generate the

start and stop keys for the index, but the filter_predicates column will list the predicates that cannot be

used until the leaf blocks have been reached (in other words, the ones that should not be used in the calculation

of the effective index selectivity).

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 75

Ranges Compared to In-Lists

In Chapter 3, we found an oddity with in-lists and tablescans under 8i. It is worth checking

whether this oddity shows up when the expected access path is through an index. So let’s run a

simple test (btree_cost_04.sql in the online code suite) against our base data:

select

 /*+ index(t1) */

 small_vc

from

 t1

where

 n1 = 5

and ind_pad = rpad('x',40)

and n2 in (1,6,18)

;

Execution Plan (8.1.7.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=65 Card=58 Bytes=3364)

 1 0 INLIST ITERATOR

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=65 Card=58 Bytes=3364)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=9 Card=58)

Execution Plan (9.2.0.6 and 10.1.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=68 Card=60 Bytes=3480)

 1 0 INLIST ITERATOR

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=68 Card=60 Bytes=3480)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=9 Card=60)

Sure enough, the cost for the execution plan with the in-list varies between 8i and 9i. This

shouldn’t really be a surprise; the error in 8i relates directly to the selectivity of the in-list, and

only indirectly to the cost. The error has been introduced before we even get to working out the

cost. So if you use in-lists with indexes in 8i, the cost for the execution plan may go up, and the

optimizer may switch to a different index or even a tablescan when you upgrade to 9i or 10g.

OPTIMIZER_INDEX_CACHING AND IN-LISTS

The optimizer_index_caching parameter was introduced in 8i to allow some room for correcting the

optimizer’s assumption that all reads are physical reads. It is usually mentioned as having an impact on the

cost calculation for index block accesses for the inner (second) table of nested loop joins, but it also has an

effect on the cost calculation for in-list iteration. Very specifically, it does not have an impact on the cost calcu-

lation for a simple, single-table indexed access path.

I don’t have a complete understanding of how this works with in-lists, but as soon as the parameter is

set to a non-zero value, the effective cost of the blevel component of the formula seems to be halved, after

which the whole of the index component is adjusted by the cache percentage, with the usual oddities of

76 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

round() and ceil() confusing the issue. However, there also seems to be a lower limit relating to number

of leaf blocks divided by product of column selectivities.

It would be nice to work out the whole algorithm, but it is probably sufficient in most cases to have this

rough approximation.

How Do You Handle Partial Use of a Multicolumn Index?

After the example of the range scan at the start of the index, I don’t think I need to go through

all the workings for this one, because it’s really just a special case of the previous problem. Take

a table with an index (col1, col2, col3, col4), and consider this query:

select

 *

from

 t1

where

 col1 = {const}

and col2 = {const}

-- and no predicate on col3

and col4 = {const}

We calculate the effective index selectivity from just col1 and col2, and we calculate the

effective table selectivity from col1, col2, and col4. Then we apply the basic formula and the job

is done.

What About Index Full Scans?

There are occasions when the optimizer will decide that the optimum access path is to read the

entire index in correct index order, starting with the leaf block at one end of the index and

following the leaf pointers until it gets to the leaf block at the other end of the index.

FIRST_ROWS OPTIMIZATION

One of the options for the optimizer_mode in 8i was first_rows. This option still exists for backward

compatibility in 9i and 10g, but is deprecated. One of the critical features of first_rows optimization

(compared to the newer first_rows_N optimization) was the existence of a few rules for overriding the

normal costing behavior.

One such rule was that if there was an index that could be used to avoid a sort, then the optimizer would

use it—apparently regardless of how much more expensive the path might be. So a query that acquired five

rows and sorted them under all_rows might switch to acquiring 1,000,000 rows, and discarding all but five

of them under first_rows if this meant the sort could be avoided.

So one side effect of first_rows optimization was the relatively frequent appearance of full scans of

indexes. (In fact, you could change this behavior by adjusting the hidden parameter

_sort_elimination_cost_ratio, as the default value made the behavior rather extreme.)

One possible cause for this behavior would be to avoid a sort for an order by clause, another

might be that almost all the data in the table had been deleted and an indexed access to just the

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 77

few rows remaining would be quicker than scanning a very large number of empty table blocks.

Consider this example (btree_cost_03.sql in the online code suite):

alter session set "_optimizer_skip_scan_enabled"=false;

select

 /*+ index(t1) */

 small_vc

from

 t1

where

 n2 = 2

order by

 n1

;

Execution Plan (8.1.7.4, 9.2.0.6 and 10.1.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1601 Card=500 Bytes=8500)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=1601 Card=500 Bytes=8500)

 2 1 INDEX (FULL SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=1113 Card=500)

Notice how there is no clue in this example that the order by clause is present in the query.

More complex execution plans may be a little more helpful, with explicit lines like sort (order

by) nosort.

How does the cost work in this case? Informally, we have no restrictions on the index until

after we have reached the leaf blocks, so we could expect the effective index selectivity to be 1.00

(100%). When we examine the leaf blocks, we can identify the entries where n2 = 2, a single

predicate with a selectivity of 0.05, so we could expect this to be the effective table selectivity. So

let’s put these numbers into the formula and check:

Cost =

 2 + (1 * 1111) + (0.05 * 9745) =

 2 + 1111 + 487.25 = -- round() or ceil() ?

 1113 + 488 = -- I've chosen ceil()

 1601

The numbers do work out properly—but only because I’ve fiddled them a little bit. Usually

it’s looked as if ceil() is used on costs in 8i, and round() in 9i and 10g. The error in this example

is small, so I’m not going to worry too much about it. (For commonly occurring cases, I might

fuss to nail down the error; for the fringe examples I’m happy with a 99% fit to the model, espe-

cially since I know that the kernel code has a number of “adjustments” for special cases.)

And Index-only Queries?

What should we do with the baseline formula when the query doesn’t need to visit the table at

all? Again, we can start with an informal argument, and check to see if the arithmetic works. If

we aren’t going to visit the table, then perhaps we just ignore the last component—the bit that

represents the visit to the table (btree_cost_03.sql in the online code suite).

78 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

select

 /*+ index(t1) */

 n2

from

 t1

where

 n1 between 6 and 9

order by

 n1

;

Execution Plan (9.2.0.6 and 10.1.0.4)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=230 Card=2051 Bytes=12306)

1 0 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=230 Card=2051 Bytes=12306)

As usual, we have to use a little care to calculate the selectivity of the range-based predicate

on n1. In this case it is (9 – 6) / (24 – 0) + 2/25 = 3/24 + 2/25 = 0.205. So if we forget about the table

component in the baseline formula, we get

Cost =

 2 + 0.205 * 1111 =

 2 + 227.755 =

 230

Our assumption seems to be correct.

The Three Selectivities

Just to finish off, let’s add one final refinement to our test case, to show that the general case of

a single table access by B-tree index has three selectivities. Run the following query (script

btree_cost_02.sql in the online code suite again) through autotrace:

select

 /*+ index(t1) */

 small_vc

from

 t1

where

 n1 between 1 and 3

and ind_pad = rpad('x',40)

and n2 = 2

and small_vc = lpad(100,10)

;

Execution Plan (9.2.0.6 and 10.1.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=264 Card=1 Bytes=58)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=264 Card=1 Bytes=58)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=184 Card=1633)

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 79

This query starts like the example in the section “More on Range-based Tests,” but adds

one more predicate: small_vc = lpad(100,10). Note particularly the cost has not changed, but

the cardinality has dropped from 82 to 1 (Card=1 in the first and second lines). The optimizer

has calculated that the query will return just one row.

The mechanical steps at execution time are as follows:

• Check all the index leaf blocks for the range n1 between 1 and 3 (effective index selectivity).

• Check all the table rows where the index entry passes all three index predicates (effective

table selectivity).

• Return the rows where the fourth predicate passes.

So we have

• Effective index selectivity (n1) = 0.1633333

• Effective table selectivity (n1, ind_pad, n2) = 0.163333 * 1 * 0.05

• Final table selectivity (n1, ind_pad, n2, small_vc) = 0.163333 * 1 * 0.05 * 0.0001

And we get these cardinalities (which are always some variant of selectivity * input row

count):

Index access line =

 round(0.163333 * user_tables.num_rows (10,000)) = 1,633

Rowid source (not part of plan) =

 round(0.0081667 * user_tables.num_rows (10,000)) = 82

Table return =

 round(0.0000081667 * user_tables.num_rows (10,000)) = 0!

At first glance, this seems to be another place where my theory about how 9i and 10g use

the round() function to produce the final cardinality seems to break. In this case, though, it

isn’t really surprising, and you will find several other occasions where an answer that technically

looks as if it should be zero is changed to one.

It’s an interesting point, of course, that 9i and 10g report 1,633 as the cardinality on the

index line of this plan. In most cases, the reported cardinality is the output cardinality, not the

input cardinality—in other words, the number of rows that will be passed on by this line of the

plan, rather than the number of rows that will be examined by this line of the plan. Ideally, of

course, we would like to see both 1,633 and 82 reported against the index line in the plan, as

both numbers are relevant—unfortunately, there is only space for one value in the execution plan.

Looking again at the section “More on Range-based Tests,” 8i appeared to be following the

output count rule when it reported 82 against the index line where 9i and 10g reported 1,633. In

this example, 8i went one step further and reported a cardinality of just one against the index

line. There will always be little inconsistencies like this that cause endless confusion, especially

as you migrate through different versions of Oracle.

80 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

Problems with 10.1.0.4

If you examine script btree_cost_02.sql closely, you will see that it calls a copy of my

hack_stats.sql script, which has been set to change the value of user_indexes.num_rows for

the critical index. Originally I had done this to check whether Oracle used the value of num_rows

stored in user_tables or user_indexes when working with the less common uses of indexes. In

8i and 9i, the reported cardinalities did not change when I made this change, but in 10.1.0.4, I

got the following results from the preceding query when I changed the num_rows value in

user_indexes to 11,000 and 9,900 respectively:

Execution Plan (10.1.0.4, autotrace – user_indexes.num_rows = 11,000)

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=264 Card=1 Bytes=58)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (TABLE) (Cost=264 Card=1 Bytes=58)

2 1 INDEX (RANGE SCAN) OF 'T1_I1' (INDEX) (Cost=184 Card=1797)

Execution Plan (10.1.0.4, autotrace – user_indexes.num_rows = 9,900)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=93 Card=1 Bytes=58)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (TABLE) (Cost=93 Card=1 Bytes=58)

2 1 INDEX (RANGE SCAN) OF 'T1_I1' (INDEX) (Cost=12 Card=82)

In the case where I have boosted the value of num_rows from 10,000 to 11,000, the cardinality

on the index line has gone up from 1,633 to 1,797—the optimizer seems to have used

user_indexes.num_rows to calculate the cardinality of this line (1,797 = 1,633 * 11,000 / 10,000).

Slightly surprising, but perfectly rational, and the cost of the query has not changed significantly, so

quite a safe step.

But look what has happened when I artificially lowered the value of user_indexes.

num_rows—the cost of the index line drops from its original 184 down to 12, and the cardinality

drops from 1,633 to 82. The change in cardinality is no big deal, as the error is self-correcting by

the time we reach the table—but the dramatic drop in cost echoes on through the plan. Basically,

the arithmetic has simply dropped the cost of the leaf block scan (possibly through a simple

numerical error: trunc(9,000 / 10,000) = 0).

Of course, it isn’t completely safe to draw absolutely firm conclusions from hacked statistics,

so script btree_cost_02a.sql in the online code suite repeats the final test of btree_cost_02.sql,

but includes one extra line in setting up the data:

update t1

set

 n1 = null,

 ind_pad = null,

 n2 = null

where

 rownum <= 100

;

This line changes the data so that there are 100 rows in the table that do not appear in the

index. This has virtually no effect on the costs and cardinalities of the plans produced in 8i and

9i, but again, when we get to 10g, we get a nasty surprise—the results we got from hacking the

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 81

statistics still appear when the data is genuine. This is the execution plan for the last query with

the (slightly) modified data—I’ve included the equivalent plan from 9.2.0.6 for comparative

purposes:

Execution Plan (10.1.0.4, autotrace – 100 completely null entries)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=90 Card=1 Bytes=58)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (TABLE) (Cost=90 Card=1 Bytes=58)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (INDEX) (Cost=11 Card=80)

Execution Plan (9.2.0.6, autotrace – 100 completely null entries)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=260 Card=1 Bytes=58)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=260 Card=1 Bytes=58)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=182 Card=1633)

Tracking this down into the 10053 trace file, we find the following critical details (note that

the entry labelled ix_sel_with_filters used to be called the tb_sel in earlier versions of Oracle):

With no null entries:

ix_sel: 1.6333e-001 ix_sel_with_filters: 8.1667e-003

With 100 null entries

ix_sel: 8.0850e-003 ix_sel_with_filters: 8.0850e-003

Clearly, when things go wrong, something has caused the ix_sel_with_filters to get

copied into the ix_sel—which has the effect of losing the cost of the leaf_block accesses. Just

to confuse the issue though, if you run script btree_cost_02a.sql several times in a row, you

will find that sometimes it produces the wrong cost, and sometimes it produces the right cost,

with the following line appearing in the 10053 trace:

ix_sel: 1.6333e-001 ix_sel_with_filters: 8.0041e-003

The underlying problem is that the call to dbms_stats.gather_table_stats(), with the

cascade option set to true, sometimes fails to update the index statistics. Counterintuitively,

when dbms_stats gets it wrong, the execution plan comes up with the right cost (because the

value of user_indexes.num_rows stays the same as user_tables.num_rows), and when dbms_stats

gets it right, the execution plan comes up with the wrong costs because user_indexes.num_rows is

(correctly) recorded as being less than user_tables.num_rows.

For the moment, I am assuming that this is a bug, so I haven’t experimented further with

the issue, as it may be fixed by the time this book is in print. But bear in mind that on an upgrade

from 9i to 10g, this bug means that some very simple queries could change from tablescans to

indexed accesses because the cost of the indexed access path has suddenly become unrealistically

low—and it seems that this could happen more or less randomly.

CPU Costing
When you get to 9i, you have the option of enabling system statistics, and this makes a differ-

ence to execution plans. We examined how the new costing mechanisms work in Chapter 2,

82 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

but we can now consider the impact the feature can have even on very simple index-based

execution plans.

As far as indexes are concerned, the arithmetic is basically unchanged. As we saw in the

earlier chapter, the critical features of CPU costing are the time component for multiblock I/Os

and the CPU utilization. But typical indexed access is done in single-block I/Os so the time

component is irrelevant, and the CPU utilization walking an index to locate and acquire a few

rows from a table is usually relatively small.

The big difference that appears when you enable CPU costing is that tablescans suddenly

become more expensive. I’ll demonstrate this with an example. To start, here’s some code to

create some system statistics (the code was specifically designed for 9i, but is valid on 10g,

where there are a couple of other statistics):

alter session set "_optimizer_cost_model" = cpu;

begin

 dbms_stats.set_system_stats('CPUSPEED',350); -- MHz

 dbms_stats.set_system_stats('MREADTIM',20); -- millisec

 dbms_stats.set_system_stats('MBRC',8);

 dbms_stats.set_system_stats('SREADTIM',10); -- millisec

end;

/

In this code fragment, we are telling the optimizer to assume that our CPU speed is 350MHz

(or probably 350 million Oracle operations per second), that a multiblock I/O will take 20 millisec-

onds and will typically be fetching 8 blocks, whereas a single block I/O takes 10 milliseconds.

The deliberate setting of the optimizer cost model to use CPU costing is to standardize the

effect between 9i and 10g. The default value for this parameter is choose, and 9i will choose to

use CPU costing only if the system statistics exist, but 10g will always choose to use CPU costing

and then synthesize some statistics if there aren’t any in place (and I can’t get the delete_

system_stats call to drop the system statistics in 10g).

If we then run the following query against our base data set, we can see the effects of CPU

costing (see script btree_cost_05.sql in the online code suite):

select

 small_vc

from

 t1

where

 n1 = 2

and ind_pad = rpad('x',40)

and n2 in (5,6,7)

;

In my test script, I ran the query with an index() hint, a full() hint, and unhinted. The

costs behaved as shown in Table 4-2.

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 83

In the absence of the system statistics, the optimizer estimated that the index-based path

would visit 68 blocks individually for a total of 68 I/O requests, compared to 1 + (371 / 6.59) for

the tablescan. (Remember that for tablescans and index fast full scans, and ignoring ASSM

tablespaces, the optimizer divides the high water mark by an adjusted value of the

db_file_multiblock_read_count.)

When we enable system statistics, the optimizer decides that the cost for the indexed path

is still 68 for the I/O component, plus a small extra cost to cater to the CPU cost of acquiring

blocks, and making a few data comparisons.

SYSTEM STATISTICS VS. OPTIMIZER_INDEX_COST_ADJ

One of the most important features of system statistics (or CPU costing) is that it allows the optimizer to

balance the costs of single-block and multiblock reads properly by scaling up the cost of a multiblock read. As

an early fix to this imbalance, the parameter optimizer_index_cost_adj appeared in 8i. In effect, this

parameter appeared to be a percentage that would be used to scale down the cost of single block reads

compared to multiblock reads. (See Tim Gorman’s paper “The Search for Intelligent Life in the Cost Based

Optimizer” at www.evdbt.com for the first useful paper published about this parameter.)

The flaw built into this fix was that it reduced the cost of single block reads, rather than increasing the

cost of multiblock reads. On the plus side, this did tend to stop the optimizer from using excessive tablescans.

On the minus side, the rounding built into the calculations could cause the optimizer to switch from a good

index to a bad index, because their costs became identical after adjustment and rounding. When you scale

down, rounding errors become more significant.

The cost for the tablescan path changes more dramatically when we switch to CPU costing. To

work out the I/O cost component, we divide the high water mark by the actual stored MBRC, and

round up: ceiling(371/8) = 47. Then we double it, because our mreadtim is twice our sreadtim,

to get 94. We then add a little for the amount of CPU that will be used examining every row of

the table.

The upshot of this is that if your system statistics really do represent the typical behavior

of your system, then the cost based optimizer can produce a cost that is a more realistic reflection

of actual resource usage and time to completion before it starts running the query.

Table 4-2. Effects of System Statistics

Test Case Original Cost Cost with System Statistics

9i / (10g)

With index() hint 68 69 (68)

With full() hint 58 96 (95)

Path when not hinted Full tablescan Index iterator

84 C H A P T E R 4 ■ S I M P L E B - T R E E A C C E S S

But as the last line of the table of results shows—upgrading (or enabling system statistics

some time after an upgrade) could leave you with lots of execution plans changing spontane-

ously, with switches from tablescans to indexed access paths being quite likely. In theory, any

changes should be better paths, but I wouldn’t guarantee that this will be true in every case.

Loose Ends
When you start experimenting with indexes, you may find that the numbers don’t work quite

correctly. The optimizer might use various adjustments in different circumstances that result

in the calculations being off by plus or minus one.

We have already noted that there are variations between the versions of the Oracle (and

sometimes within a version) about the use of round() and ceil(). It took me a long time to

notice this because all my test cases just happened to produce results where round() and

ceil() gave the same result. The moral is that you should never assume that you have worked

out exactly what’s going on; a good approximation is as close as you can ever get.

But just when you think you’re close enough, you discover that there really isn’t a formula,

there is only a decision tree, with different formulae at the end at each of the branches. Here are

a couple of common cases that may cause a variation between the baseline formula and the

actual result:

• For unique indexes, or nonunique indexes supporting unique or primary key constraints,

the optimizer uses the standard formula, and then subtracts 1. However, in the case of a

nonunique index supporting a unique or primary key constraint, this adjustment is not

made if the constraint is deferrable. So be careful—you may be tempted to make all

your constraints deferrable just in case, but there are small side effects that may cause execu-

tion plans to change.

• Indexes where the blevel is set to 1 (so the index goes straight from the root block to the

leaf blocks). The optimizer effectively ignores the blevel if every column in the index

appears in an equality predicate. This is an interesting case, as a root block split (which

could happen because just one row in the table has been updated) would then push the

cost of the index up by two—which could change the access path. This is just one of

many clues that small tables can be more important than large tables when you want to

solve optimizer problems.

INDEXES ON SMALL TABLES

A strategy for handling indexes and statistics on small tables can be quite important because some small

indexes may (apparently) need regular rebuilds. If they are on the cusp between a blevel of 1 and a blevel

of 2, and you keep collecting statistics, one extra row may be all it takes to move you from a blevel of 1 to

a blevel of 2. It’s not a dramatic change in the data size, or the number of blocks in the index, but it causes

a sudden jump in the costing calculation.

If you do have a couple of candidates in this unusual state, one option is to stop collecting the statistics,

another is to set the blevel by hand after collecting the statistics, and a third is to rebuild the index every time

prior to collecting the statistics.

C H A P T E R 4 ■ S I M P LE B - T R E E A C C E S S 85

Summary
Although the chapter was only intended to be an introduction to how the optimizer assesses

the cost of using a simple B-tree index, we have covered a lot of ground. Key points to remember

though are as follows:

The typical cost of using a B-tree index comprises three components—the depth of the

index, based on the blevel; the number of index leaf blocks that will be visited, based on

leaf_blocks; and the number of visits to table blocks, based on the clustering_factor.

The clustering_factor of an index is a primary indicator of how desirable the index appears

to be to the optimizer. The drawback is that you need to compare the clustering_factor to the

number of rows and blocks in the table—the number by itself is effectively meaningless.

If you have columns in an index that are often omitted from the where clause or have

range-based tests applied to them, then they should generally be pushed towards to the end of

the index definition; otherwise your query could end up doing a lot of work with index leaf

blocks. The optimizer’s cost calculation will reflect this, and may result in the index being

ignored in favor of alternative paths.

System statistics should be enabled as part of your migration to 9i (or 10g), and you need

to be aware of the impact this will have on execution plans.

Test Cases
The files in the download for this chapter are shown in Table 4-3.

Table 4-3. Chapter 4 Test Cases

Script Comment

btree_cost_01.sql Basic script used in this chapter

rebuild_test.sql Indicates that it is possible that rebuilding an index can cause a
problem

btree_cost_02.sql Examples of cost calculations for range scans and partial use of index

btree_cost_04.sql Example of in-list error in 8i

btree_cost_03.sql Index full scans, index-only scans

hack_stats.sql Script to modify statistics directly on the data dictionary

btree_cost_02a.sql Repeats the btree_cost_02.sql example, but allows for some
completely null entries

btree_cost_05.sql Example of impact of CPU costing

setenv.sql Sets a standardized environment for SQL*Plus

87

■ ■ ■

C H A P T E R 5

The Clustering Factor

In the previous chapter, I warned you that the clustering_factor was an important factor in

the cost of using a B-tree index for a range scan and could easily be the biggest cause of errors

in the calculation of cost. It’s time to find out why things can go wrong.

This chapter is very important because it describes many of the sensible strategies that

DBAs adopt to improve performance or avoid contention, only to discover side effects that can

leave the optimizer ignoring indexes that it ought to be using. Almost invariably, the sensible

strategy has caused problems for some queries because of the impact it has had on the

clustering_factor.

The clustering_factor is a single number that represents the degree to which data is

randomly distributed through a table, and the concept of creating a number to represent the

data scatter in a table is a good one. Unfortunately, some recent, and not-so-recent, features of

Oracle can turn this magic number into a liability.

In all the discussions that follow, we shall be focusing very specifically on traditional heap-

organized tables, and you will find that my examples of problematic indexes tend to be ones

that are broadly time-based or sequence-based.

Baseline Example
To see how badly things can go wrong, we will start with a test case that mimics a common real-

life pattern and see what the clustering_factor looks like when things go right.

We start with a table that has a two-part primary key: the first part being a date, and the

second being a sequence number. We will then run five concurrent processes to execute a

procedure emulating end-user activity. The procedure inserts data for 26 days at the rate of 200

rows per day—but to keep the experiment short, an entire day’s input gets loaded in just 2 seconds.

The total volume of data will be 5 processes * 26 days * 200 rows per day = 26,000 rows. On a

reasonably modern piece of hardware, you should expect the data load to complete in less than

a minute.

As usual, my demonstration environment starts with an 8KB block size, locally managed

tablespaces with 1MB uniform extents, manual segment space management, and system

statistics (cpu_costing) disabled (see the script base_line.sql in the online code suite).

88 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

create table t1(

 date_ord date constraint t1_dto_nn not null,

 seq_ord number(6) constraint t1_sqo_nn not null,

 small_vc varchar2(10)

)

pctfree 90

pctused 10

;

create sequence t1_seq

;

create or replace procedure t1_load(i_tag varchar2) as

 m_date date;

begin

 for i in 0..25 loop -- 26 days

 m_date := trunc(sysdate) + i;

 for j in 1..200 loop -- 200 rows per day

 insert into t1 values(

 m_date,

 t1_seq.nextval,

 i_tag || j -- used to identify sessions

);

 commit;

 dbms_lock.sleep(0.01); -- reduce contention

 end loop;

 end loop;

end;

/

rem

rem Now set up sessions to run multiple copies

rem of the procedure to populate the table

rem

You will notice the unusual values for pctused and pctfree on the table; these are there so

that I can create a reasonably large table without generating a lot of data.

To run the test, you have to create the sequence, table, and procedure, and then start up

five different sessions to run the procedure simultaneously. In the supplied script, the proce-

dure also uses the dbms_lock package to synchronize the start time of the concurrent copies of

itself, but to keep the code sample short, I have not included the extra lines in the text.

When the five concurrent executions have completed, you need to create the relevant

index, and then generate and inspect the relevant statistics. The following results come from a

system running 9i.

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 89

create index t1_i1 on t1(date_ord, seq_ord);

begin

 dbms_stats.gather_table_stats(

 user,

 't1',

 cascade => true,

 estimate_percent => null,

 method_opt => 'for all columns size 1'

);

end;

/

select

 blocks,

 num_rows

from

 user_tables

where

 table_name = 'T1'

;

 BLOCKS NUM_ROWS

---------- ----------

 749 26000

select

 index_name,

 blevel,

 leaf_blocks,

 clustering_factor

from

 user_indexes

where

 table_name = 'T1'

;

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

-------------------- ---------- ----------- -----------------

T1_I1 1 86 1008

Notice how the clustering_factor in this case is similar to the number of blocks in

the table, and very much smaller than the number of rows in the table. You may find the

clustering_factor varies by 1% or 2% if you repeat the test, but it will probably stay some-

where around either the 750 mark or the 1,000 mark depending on whether you are running a

single or multiple CPU machine. This looks as if it may be a good index, so let’s test it with a

slightly unfriendly (but perfectly ordinary) query that asks for all the data for a given date.

90 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

set autotrace traceonly explain

select count(small_vc)

from t1

where date_ord = trunc(sysdate) + 7

;

set autotrace off

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=44 Card=1 Bytes=13)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=44 Card=1000 Bytes=13000)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=5 Card=1000)

Note that our query uses only one column of the two-column index. Applying the Wolfgang

Breitling formula (which I introduced in Chapter 4), we can see the following figures drop out:

cost =

 blevel +

 ceil(effective index selectivity * leaf_blocks) +

 ceil(effective table selectivity * clustering_factor)

In this case, we are after 1 day out of 26—a selectivity of 3.846% or 0.03846—and the two

selectivities are identical. Putting these figures into the formula:

cost =

 1 +

 ceil(0.03846 * 86) +

 ceil(0.03846 * 1,008)

 = 1 + 4 + 39 = 44

We know, and Oracle can observe through the clustering_factor, that all the rows for a

given date have arrived at about the same time, and will be crammed into a small number of

adjacent blocks. The index is used, even though Oracle has to fetch 1,000 rows, or nearly 4% of

the data. This is good, as our simple model is probably a reasonable representation of many

systems that are interested in daily activity.

Reducing Table Contention (Multiple Freelists)

But there may be a problem in our setup. In a high-concurrency system, we might have been

suffering from a lot of contention. Take a look at the first few rows in the sample data that we

have just produced. You will probably see something like this:

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 91

select

 /*+ full(t1) */

 rowid, date_ord, seq_ord, small_vc

from

 t1

where

 rownum <= 10

;

ROWID DATE_ORD SEQ_ORD SMALL_VC

------------------ --------- ---------- ----------

AAAMJHAAJAAAAAKAAA 18-FEB-04 1 A1

AAAMJHAAJAAAAAKAAB 18-FEB-04 2 B1

AAAMJHAAJAAAAAKAAC 18-FEB-04 3 C1

AAAMJHAAJAAAAAKAAD 18-FEB-04 4 A2

AAAMJHAAJAAAAAKAAE 18-FEB-04 5 D1

AAAMJHAAJAAAAAKAAF 18-FEB-04 6 E1

AAAMJHAAJAAAAAKAAG 18-FEB-04 7 B2

AAAMJHAAJAAAAAKAAH 18-FEB-04 8 D2

AAAMJHAAJAAAAAKAAI 18-FEB-04 9 B3

AAAMJHAAJAAAAAKAAJ 18-FEB-04 10 E2

Remember that the extended rowid is made up of the following:

• object_id First six letters (AAAMJH)

• Relative file_id Next three letters (AAJ)

• Block within file Next six letters (AAAAAK)

• Row within block Last three letters (AAA, AAB, AAC ...)

All these rows are in the same block (AAAAAK). In my test run, I populated the column

small_vc with a tag that could be used to identify the process that inserted the row. All five of

our processes were busy hitting the same table block at the same time. In a very busy system

(in particular, one with a high degree of concurrency), we might have seen lots of buffer busy

waits for blocks of class data block for whichever one block was the current focus of all the inserts.

How do we address this issue? Simple: we read the advice in the Oracle Performance Tuning

Guide and Reference and (for older versions of Oracle particularly) realize that we should have

created the table with multiple freelists. In this case, because we expect the typical degree of

concurrency to be 5, we might go to exactly that limit, and create the table with the extra clause:

storage (freelists 5)

With this clause in place, Oracle maintains five linked lists of free blocks hanging from the

table’s segment header block, and when a process needs to insert a row, it uses its process ID

to determine which list it should visit to find a free block. This means that (with just a little bit

of luck) our five concurrent processes will never collide with each other; they will always be

using five completely different table blocks to insert their rows.

92 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

FREELIST MANAGEMENT

The complete cycle of activity relating to freelist management is outside the scope of this book, but the following

points are reasonably accurate for the simplest cases:

By default, a table is defined with just one segment freelist, and Oracle bumps the high water mark

(HWM) by five blocks and adds those blocks to the freelist every time the freelist is emptied. Generally, it is

only the top block on a freelist that is available for inserts in ordinary heap-organized tables.

If you specify multiple freelists, Oracle allocates one more segment freelist than you expect and uses the

first one as the master freelist. This master freelist is used as the focal point for ensuring that all the other

freelists behave in a reasonable way and stay about the same length (which is somewhere between zero and

five blocks).

Historically, you could only set the freelists parameter when you created the table, but this changed

somewhere in the 8i timeline (possibly in 8.1.6) so that you could modify the value used for future allocations

with a simple, low-cost, alter table command.

Repeat the baseline test with freelists set to 5, though, and you will discover that the

price you pay for reducing contention can be very high. Look what happened to the

clustering_factor and the desirability of the index when I first made this change (script

free_lists.sql in the online code suite):

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

-------------------- ---------- ----------- -----------------

T1_I1 1 86 26000

select count(small_vc)

from t1

where date_ord = trunc(sysdate) + 7

;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=115 Card=1 Bytes=13)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=115 Card=1000 Bytes=13000)

The clustering_factor has changed from around 1,000 (close to the number of table

blocks) to 26,000 (the number of table rows), so the optimizer thinks it is a truly appalling index

and declines to use it for our single-date query. The saddest thing about this is that the data for

that one date will still be in exactly the same 30 to 35 table blocks that they were in when we had

freelists set to 1, it’s just the row order that has changed.

In Chapter 4, I produced a schematic of a table and index showing the notional mechanism

that Oracle used to count its way to the clustering_factor. If we produce a similar diagram for

a simplified version of our latest example—using freelists set to 2, and pretending that Oracle

adds only two blocks at a time to a freelist—then the schematic would look more like Figure 5-1.

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 93

Figure 5-1. The clustering_factor and multiple freelists

Process 1 is busy inserting rows into block 1, but process 2 is using a different freelist, so it

is busy inserting rows into block 3 (in a real system, it is more likely to be inserting rows into a

position five blocks further down the table). But both processes are using the same sequence

generator, and if the two processes happen to run perfectly in step, alternating values from

the sequence will appear in alternating blocks. Consequently, as Oracle walks the index, it

keeps stepping back and forth between the same pair of table blocks, incrementing the

clustering_factor as it goes. The counter I displayed for the clustering_factor in the first

schematic isn’t needed here—because it simply stays in step with the values of the ID column.

If you look at the diagram, it is very obvious that it will take just two block reads to get all

the values from 1 to 10, but Oracle’s method for calculating the clustering_factor makes the

optimizer think that it is going to have to visit 10 different blocks. The problem is that Oracle

doesn’t maintain a recent history when calculating the clustering_factor, it simply checks

whether the current block is the same as the previous block.

FREELIST SELECTION

When a process needs to insert a row into a table with multiple freelists, it selects a freelist based on the

process ID. (MetaLink note 1029850.6 quotes the algorithm as mod(process_id, freelist count) + 1.) This

means that collisions between processes may still occur, irrespective of the number of freelists you define.

In my test run, I happened to have five processes that each picked a separate freelist. Your results may

vary quite significantly. It may seem a little surprising that the choice is based on the process ID, rather than

the session ID—but the rationale behind this choice may have been to minimize contention in a shared server

(MTS) environment.

94 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

When you fix a table contention problem, you may find that queries that should be using

index range scans suddenly start to use tablescans because of this simple arithmetic issue. We

shall see an interesting fix for this problem shortly.

Reducing Leaf Block Contention (Reverse Key Indexes)

Before looking at fixes for a misleading value of the clustering_factor, let’s examine a couple

of other features that can produce the same effect. The first is the reverse key index, introduced

in Oracle 8.1 as a mechanism for reducing contention (particularly in RAC systems) on the

leading edge of sequence-based indexes.

A reverse key index operates by reversing the byte order of each column of the index before

inserting the resulting value into the index structure. The effect of this is to turn sequential

values into index entries that are randomly scattered. Consider, for example, the value

(date_ord, seq_no) = ('18-Feb-2004', 39); we could use the dump() function to discover that

internally this would be represented as ({78,68,2,12,1,1,1},{ c1,28}):

select

 dump(date_ord,16) date_dump,

 dump(seq_no,16) seq_dump

from t1

where date_ord = to_date('18-feb-2004')

and seq_no = 39

;

DATE_DUMP SEQ_DUMP

------------------------------ ------------------

Typ=12 Len=7: 78,68,2,12,1,1,1 Typ=2 Len=2: c1,28

but when it is reversed it becomes ({1,1,1,12,2,68,78}, {28,c1}):

select

 dump(reverse(date_ord),16) date_dump,

 dump(reverse(seq_no),16) seq_dump

from t1

where date_ord = to_date('18-feb-2004')

and seq_no = 39

;

DATE_DUMP SEQ_DUMP

------------------------------ ------------------

Typ=12 Len=7: 1,1,1,12,2,68,78 Typ=2 Len=2: 28,c1

Note how the two columns are reversed separately, which means that in our example, all

the entries for 18 February 2004 would still be close together in our index, but something odd

would happen to the sequencing of the numeric portion within that date. If we dump out a

section of index around the value ('18-Feb-2004', 39) with the alter system dump datafile

command, we find the following ten values as consecutive entries for seq_ord (script

reverse.sql in the online code suite produces the same result in a much more convenient

fashion, so you can find out how far away the value 38 and 40 appear from 39):

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 95

REVERSED_SEQ_ORD SEQ_ORD

------------------------------ ----------

28,7,c2 639

28,8,c2 739

28,9,c2 839

28,a,c2 939

28,c1 39

29,2,c2 140

29,3,c2 240

29,4,c2 340

29,5,c2 440

29,6,c2 540

What has this done to our clustering_factor and execution plan? Go back to the table we

used in the baseline test (using the default value of one for freelists), and rebuild the index as

a reverse key index (script reversed_ind.sql in the online code suite):

alter index t1_i1 rebuild reverse;

begin

 dbms_stats.gather_table_stats(

 user,

 't1',

 cascade => true,

 estimate_percent => null,

 method_opt => 'for all columns size 1'

);

end;

/

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

-------------------- ---------- ----------- -----------------

T1_I1 1 86 25962

select count(small_vc)

from t1

where date_ord = trunc(sysdate) + 7

;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=115 Card=1 Bytes=13)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=115 Card=1000 Bytes=13000)

The purpose of reversing the index is to scatter the index entries when incoming table entries

hold sequential values—but the consequence of this is that adjacent index entries correspond

to scattered table entries; in other words, the clustering_factor has just become extreme.

96 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

Because the clustering_factor is now close to the number of rows in our test case, the execu-

tion plan has changed from an index range scan to a tablescan, even though the rows we want

are still in the same small cluster of table blocks.

Our data distribution has not changed, but Oracle’s perception of it has because the mech-

anism for calculating the clustering_factor is not aware of the impact of reverse key indexes.

REVERSE KEY INDEXES AND RANGE SCANS

You may have heard that reverse key indexes cannot be used for range scans (despite the example in the text).

This is only true in the special case of a single-column unique index (i.e., the simplest, but possibly commonest,

case in which they might be used).

For a multicolumn index (e.g. {order_date, order_number}), Oracle can use a range scan for a query

that tests for equality on the leading columns of the index. Similarly, an equality predicate on a single-column

nonunique index—perhaps a less likely target for index reversal—will produce a range scan.

It is important to be careful with words—this common misunderstanding about reverse key indexes and

range scans arises because a range scan operation need not be the result of a range-based predicate.

Reducing Table Contention (ASSM)

There is another new feature that can apparently destroy the effectiveness of an index. Again,

it is a feature aimed at reducing contention by scattering the data. And, again, an attempt to

solve one performance problem can introduce another.

In most of the test cases in this book, I have created my data in tablespaces that use the

traditional freelist space management option. The main reason for sticking to freelist space

management was to make sure that the tests were fairly reproducible. But for the next test, you

need a tablespace that uses automatic segment free space management (more commonly

known as automatic segment space management, or ASSM). For example:

create tablespace test_8k_assm

 blocksize 8K

 datafile 'd:\oracle\oradata\d9204\test_8k_assm.dbf'

 size 50m reuse

 extent management local

 uniform size 1M

 segment space management auto

;

Oracle introduced this new strategy for segment space management to avoid problems of

contention on table blocks during inserts, especially in RAC environments. There are two key

features to ASSM.

The first feature is structural: each segment in an ASSM tablespace uses a few blocks at the

start of each extent (typically one or two for each 64 blocks in the extent) to maintain a map of

all the other blocks in the extent, with a rough indication—accurate to the nearest quarter-block—

of how much free space is available in each block.

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 97

MORE ON ASSM BLOCKS

My description of ASSM blocks isn’t a complete picture of what happens, as the details can vary with block

size, the overall segment size, and the contiguity of extents. You may find in a large object with several adjacent

small extents that a single block in one extent maps all the blocks for the next two or three extents, up to a

maximum of 256 blocks. You will find that the first extent of a segment is a special case—in an ASSM tablespace

with 8KB block sizes, the segment header block is the fourth block of the segment!

Also, as far as the space map is concerned, the meaning of the expression free is a little fluid. When the

bitmap reports space as free with entries like 21:75-100% free, the range is a percentage of the block—

but if you have set a very low PCTFREE for the object, you can find that the difference between 75–100% free

and “full” is just a few bytes. (And Oracle seems to be a little slow to move blocks from the full status as you

delete rows.)

The second feature of ASSM appears at run time: when a process needs to insert a row, it

selects a space map block that is dictated by its process ID, and then picks from the space map

a data block that is (again) dictated by the process ID. The net effect of ASSM is that concurrent

processes will each tend to pick a different block to insert their rows, minimizing contention

between processes without intervention by the DBA.

The most important phrase in the last sentence is a “different block.” To avoid contention,

different processes scatter their data across different blocks—this may give you a clue that

something nasty could happen to the clustering_factor. Rerun the baseline test, but create a

tablespace like the preceding one, and add the following line to your table creation statement

(script assm_test.sql in the online code suite):

tablespace test_8k_assm

The results you get from the test this time might look like the following—but may look

extremely different.

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

-------------------- ---------- ----------- -----------------

T1_I1 1 86 20558

select count(small_vc)

from t1

where date_ord = trunc(sysdate) + 7;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=116 Card=1 Bytes=13)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=116 Card=1000 Bytes=13000)

Again, without any change in the data insertion code, data definition, or activity of the end

users, we have introduced a specific Oracle feature at the infrastructure level that has changed

an execution plan from an indexed access path to a tablescan.

98 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

Your results on this test may be very different from mine. It is a feature of ASSM that the

scattering of data on inserts is affected by the process IDs of the processes doing the insertion.

In a couple of repeats of the test, after disconnecting and reconnecting to Oracle to get different

process IDs, one run of the test produced a clustering_factor of 22,265 and the next a

clustering_factor of 18,504.

Another piece of information that came through from this particular test was the random-

ness of inserts and contention when using ASSM. By running the following SQL, I could get a

measure of how much collision occurred on the blocks in the table:

select

 ct, count(*)

from

 (

 select block, count(*) ct

 from

 (

 select

 distinct dbms_rowid.rowid_block_number(rowid) block,

 substr(small_vc,1,1)

 from t1

)

 group by block

)

group by ct

;

You will remember that I included a tag with each call to the procedure, and that the tag

value was copied into the small_vc column. In the preceding query, I pick up the block number,

and tag value (I used the letters A to E for the five processes running the procedure) to find out

how many blocks ended up with rows inserted by all five processes, how many ended up with

rows from any four processes, and so on. The results are shown in Table 5-1.

Table 5-1. Collision Counts with ASSM and Freelists

Number of Concurrent

Processes Hitting Block

Blocks Affected

ASSM Test 1

Blocks Affected

ASSM Test 2

Blocks Affected

FREELISTS 5 (a)

Blocks Affected

FREELISTS 5 (b)

1 361 393 745 447

2 217 258 297

3 97 37

4 38 33

5 12 6

Total blocks 725 727 745 744

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 99

As you can see, the ASSM tests (the second and third columns) still show a significant

number of blocks with apparent collisions between concurrent processes. For example, in the

third column of the table, we see 258 blocks that have been used by two of the data-loading

processes.

For comparative purposes, I have also reported the results from two tests where I set

freelists to 5. In freelists test (a), every single table block was subject to inserts from just one

process. This isn’t a guaranteed result, though; I just got lucky in that test as each of my five

processes happened to pick a separate freelist. In freelists test (b), two processes attached

themselves to the same freelist, so they were in a state of permanent collision for the duration

of the run.

So you can see that a perfectly configured set of freelists can give you absolutely minimal

contention on the table blocks during concurrent inserts—but it can go persistently wrong. On

the other hand, a degree of randomness is introduced by ASSM that means you will hardly ever

get perfect avoidance of contention, but the contention you get is more likely to be lower volume

and spread over time—the fact that all five processes used block X for inserts does not necessarily

mean that they were all trying to use it at exactly the same moment.

You might note that there also seems to be a small space saving—the tests with ASSM used

about 20 data blocks fewer than the tests with freelists. This is a side effect of the ASSM inser-

tion algorithm that manages to be a little more cunning and persistent than the insertion

algorithm for traditional freelist processing. In my case, though, the saving was offset by the

fact that 12 blocks were allocated for level 1 bitmaps (2 per extent), 1 block was allocated for the

level 2 bitmap, and an extra 16 blocks at the top of the table had been preformatted and part

used. There were actually 754 formatted blocks below the high water mark.

■Note I have heard a couple of cases where Oracle gets a little too persistent with ASSM, and finds itself

checking literally hundreds of data blocks to find one with enough space for a row—and doesn’t mark the

space map to indicate that the block is full when it should do so.

If you do need to start worrying about contention for highly concurrent inserts, you need

to investigate the relative benefits and costs of the features that Oracle gives you for avoiding

contention. In particular, you need to be careful when there are only a few processes doing all

the work.

Reducing Contention in RAC (Freelist Groups)

Another option for reducing contention on tables subject to highly concurrent inserts, partic-

ularly for OPS (as it was) and RAC (as it is now) was the option to create a table with multiple

freelist groups. The manuals still make some comment about this feature being relevant only

to multiple-instance Oracle, but in fact it can be used in single-instance Oracle, where it has an

effect similar to setting multiple freelists. (Of the two options, freelists is usually the sensible,

and sufficient, one for single-instance Oracle.)

100 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

Multiple freelists, as we saw earlier, reduce contention because each freelist has its own

top block, so insertion takes place to multiple table blocks instead of just one block. There is,

however, still a point of contention because a freelist starts with a pointer to its top block, and

all the pointers are held in the segment header block. When running RAC, even when you have

eliminated contention on table blocks by specifying multiple freelists, you may still have an

overheated segment header block bouncing around between instances.

You can specify multiple freelist groups as part of the specification for a table (see script

flg.sql in the online code):

storage (freelist groups 5)

If you do this (in a non-ASSM tablespace), you get one block per freelist group at the start

of the segment, after the segment header block. Each block (group) gets associated with an

instance ID, and each block (group) handles an independent set of freelists. So the contention on

the segment header is eliminated.

BUFFER BUSY WAITS

One of the classes recorded in the view v$waitstat is named free list. Given the existence of freelists

and freelist groups, the name is a little ambiguous. In fact, this class refers to freelist group blocks. Waits

for segment header freelists may be one of the causes when you see waits in the class segment header.

Using freelist groups can be very effective, once you work out how many to declare. If

you make sure that you set the value sufficiently high that every instance you have (and every

instance you are likely to want) has its own freelist group block, then the problems of conten-

tion on inserts, even on indexed, sequence-based columns, tend to disappear.

There are some scenarios where having multiple freelist groups on the table automati-

cally eases contention on the table blocks in RAC systems. Moreover, contention on the index

leaf blocks of sequence-based columns can be eliminated without side effects on the

clustering_factor, provided you ensure two things. First that the cache size on the sequence

is reasonably large, for example:

create sequence big_seq cache 10000;

Since each instance maintains its own “cache” (actually a just a low/high, or current/target,

pair of numbers), the values inserted by one instance will differ greatly from the values inserted

by another instance—and a big numerical difference is likely to turn into a pair of distant leaf

blocks.

Second, you also need to leave freelists set to one on the table so that the section of index

being populated by each instance won’t be affected by the flip-flop effect described in the

section on freelists.

But there is a significant side effect that you need to be aware of. Because each instance is

effectively populating its own, discrete section of index, every instance, except the one popu-

lating the current highest valued section of the index, will cause leaf block splits to be 50/50 splits

with no possibility of back-fill. In other words, on a RAC system you can take steps to avoid

contention on the table, avoid contention on indexes on sequence-based columns, and avoid

damaging the clustering_factor on those indexes; but the price you pay is that the size of the

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 101

index (specifically the leaf block count) will probably be nearly twice as large as it would be on

a database running under a single instance.

A minor drawback with multiple freelist groups (as with multiple freelists) is that there

will be multiple sets of new empty blocks waiting to be used. The high water mark on objects

with multiple freelist groups will be a little higher than otherwise (with a worst case of

5 * freelist groups * freelists), but for large objects this probably won’t be significant.

REBALANCING FREELIST GROUPS

A well-known issue of multiple freelist groups is that if you use a single process to delete a large volume

of data, all the blocks freed by the delete will be associated with just one freelist group, and cannot be acquired

automatically for use by the freelists of other freelist groups. This means that processes that are

trying to insert new data will not be able to use the existing free space unless they have attached themselves

to the “right” freelist group. So you could find an object formatting new blocks, and even adding new extents,

when there was apparently plenty of free space.

To address this issue, there is a procedure with the ambiguous name of dbms_repair.rebuild_

freelists(), which redistributes the free blocks evenly across all the object’s freelist groups. Unfor-

tunately, there is a bug in the code that makes the distribution uneven unless the process ID of the process

running the procedure is a suitable value—so you may have to run the procedure a few times from different

sessions to make it work optimally.

The major drawback to freelist groups is that you cannot change the number of freelist

groups without rebuilding the object. So if you’ve carefully matched the number of freelist

groups to the number of instances in your system, you have a reorganization problem when

you decide to add a couple of nodes to the system. Remember to plan for growth.

Column Order
In Chapter 4, we saw how a range-based predicate (e.g., col1 between 1 and 3) would reduce

the benefit of later columns in the index. Any predicates based on columns appearing after the

earliest range-based predicate would be ignored when calculating the effective index selectivity—

although they would still be used in the effective table selectivity—and this could leave Oracle

with an unreasonably high figure for the cost of that index. This led to the suggestion that you

might restructure some indexes to put columns that usually appeared with a range-based

predicate toward the end of the index definition.

This is just one important consideration when deciding the column order of an index.

Another is the possibility for improving the compressibility of an index by putting the least

selective (most repetitive) columns first. Another is the option for arranging the columns so

that some very popular queries can perform an order by without doing a sort (an execution

mechanism that typically appears as sort (order by) nosort in the execution plan).

Whatever your reason for deciding to change the order of columns in an index, remember that

it might change the clustering_factor. The knock-on effect of this might be that the calculated

cost of the index for a range scan becomes so high that Oracle ignores the index.

We can use an exaggerated model to demonstrate this effect (see script col_order.sql in

the online code suite):

102 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

create table t1

pctfree 90 pctused 10

as

select

 trunc((rownum-1)/ 100) clustered,

 mod(rownum - 1, 100) scattered,

 lpad(rownum,10) small_vc

from

 all_objects

where

 rownum <= 10000

;

create index t1_i1_good on t1(clustered, scattered);

create index t1_i2_bad on t1(scattered, clustered);

-- Collect statistics using dbms_stats here

I used the standard trick of setting a large pctfree to spread the table over a larger number

of blocks without generating a huge amount of data. The 10,000 rather small rows created by

this script required 278 blocks of storage. The trunc() function used in the clustered column

gives me the values from 0 to 99 that each repeat 100 times before changing; the mod() function

used in the scattered column keeps cycling through the numbers 0 to 99. I have created two

indexes on the same pair of columns, reversing the column ordering from the good index to

produce the bad index. The naming convention for each index is derived from an examination

of its clustering_factor:

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

-------------------- ---------- ----------- -----------------

T1_I1_GOOD 1 24 278

T1_I2_BAD 1 24 10000

When we execute a query that (according to the general theory of range-based predicates)

we think might use the index t1_i2_bad, this is what we see:

select

 count(small_vc)

from

 t1

where

 scattered = 50 -- equality on 1st column of t1_i2_bad

and clustered between 1 and 5 -- range on 2nd column of t1_i2_bad

;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=1 Bytes=16)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=4 Card=6 Bytes=96)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1_GOOD' (NON-UNIQUE) (Cost=3 Card=604)

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 103

Despite the fact that we have an index that seems to be a perfect match for the require-

ments of this query, its first column (with the equality predicate) is scattered and its second

column (with the range-based predicate) is clustered, the optimizer has chosen to use the

wrong index, the one that will be driven by the range-based predicate.

When we add a hint to force the optimizer to use the index that we thought was carefully

crafted to match the query, Oracle will use it, but the cost is more than double that of the index

that the optimizer chose by default.

select

 /*+ index(t1 t1_i2_bad) */

 count(small_vc)

from

 t1

where

 scattered = 50

and clustered between 1 and 5

;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=9 Card=1 Bytes=16)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=9 Card=6 Bytes=96)

 3 2 INDEX (RANGE SCAN) OF 'T1_I2_BAD' (NON-UNIQUE) (Cost=2 Card=6)

This really highlights the main defect in the optimizer’s derivation of the clustering_factor it

has used to work out the cost of an indexed access path. The optimizer estimates the number

of visits to table blocks, but has no idea about how many of those visits should be discounted

because they are returning to a recently visited block.

Irrespective of which index we use in this example, we will visit exactly the same number

of table blocks—but the order in which we visit them will be different, and this has been enough to

make a big difference to the optimizer’s calculations.

For completeness, let’s just run our statistics through the formula.

Selectivity of 'scattered = 50': 1 / 100 = 0.01

Selectivity of 'clustered between 1 and 5': (5 – 1) / (99 – 0) + 2/100 = 0.060404

Combined selectivity: 0.01 * 0.060404 = 0.00060404

cost (t1_i1_good) =

 1 +

 ceil(0.060404 * 24) + -- range on first column, invalidates second column

 ceil(0.00060404 * 278) -- 2nd column can be used before visiting the table

 = 1 + 2 + 1 = 4

cost (t1_i2_bad) =

 1 +

 ceil(0.00060404 * 24) + -- can use both columns for start/stop keys

 ceil(0.00060404 * 10000) -- but the clustering_factor is overwhelming

 = 1 + 1 + 7 = 9

104 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

The numbers make the impact of the clustering_factor very obvious. Although the first

set of figures shows that the range-based predicate on the first column has reduced the effec-

tiveness of the t1_i1_good index, the reduction is minor compared with the impact caused by

the enormous increase in the clustering_factor in the second set of figures.

In this example, the extra resources used because we have picked the wrong index will be

minimal—we still visit exactly the same number of rows in the table—so no extra I/O there—

and we happen to examine two leaf blocks rather than one when we use the wrong index.

The guaranteed penalty of using the wrong index would be a little extra CPU spent scan-

ning an unnecessary number of entries in the index. There are 500 entries in either index where

clustered between 1 and 5, and we will examine about 400 of them (from (1,50) to (5,50)) if we

use index t1_i1_good for our query. There are 100 entries in the index where scattered = 50,

and we will examine about five of them (from (50,1) to (50,5)) if we use index t1_i2_bad.

In real systems, the choice is more subtle than picking one of two indexes with the same

columns in a slightly different order; the scope of the error becomes much larger with changes

in complex execution plans—not just a little waste of CPU.

Extra Columns
It’s not just a change in column order that could introduce a problem. It’s a fairly common (and

often effective) practice to add a column or two to an existing index. By now I’m sure you won’t be

surprised to discover that this, too, can make a dramatic difference to the clustering_factor,

hence to the desirability of the index.

Imagine a system that includes a table for tracking product movements. It has a fairly

obvious index on the movement_date, but after some time, it might become apparent to the DBA

that a number of commonly used queries would benefit from the addition of the product_id to

this index (see script extra_col.sql in the online code suite).

create table t1

as

select

 sysdate + trunc((rownum-1) / 500) movement_date, -- 500 rows per day

 trunc(dbms_random.value(1,60.999)) product_id,

 trunc(dbms_random.value(1,10.000)) qty,

 lpad(rownum,10) small_vc,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 10000 -- 20 days * 500 rows per day.

;

rem create index t1_i1 on t1(movement_date); -- original index

rem create index t1_i1 on t1(movement_date, product_id); -- modified index

INDEX_COLUMNS BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

-------------------- ---------- ----------- -----------------

movement_date 1 27 182

movement_date, product_id 1 31 6645

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 105

Although the index size (as indicated by the leaf block count) has grown somewhat, the

significant change is yet again the clustering_factor.

When the index is just (movement_date), we expect to see lots of rows for the same date

entering the database at the same time, and the 500 rows we have created for each date will be

packed in a clump of 9 or 10 adjacent blocks in the table at about 50 rows per block. An index

based on just the movement_date will have a very good clustering_factor.

When we change the index to (movement_date, product_id), the data is still clustered by

date, but any two entries for the same product_id on the same date are likely to be in two

different table blocks in that little group of nine or ten. As we walk the index for a given date, we

will be jumping back and forth around a small cluster of table blocks—not staying inside one

table block for 50 steps of the index. Our clustering_factor will be hugely increased.

We can see the effect of this with a couple of queries:

select

 sum(qty)

from

 t1

where

 movement_date = trunc(sysdate) + 7

and product_id = 44

;

select

 product_id, max(small_vc)

from

 t1

where

 movement_date = trunc(sysdate) + 7

group by

 product_id

;

The first query is an example of the type of query that encouraged us to add the extra

column to the index. The second query is an example of a query that will suffer as a conse-

quence of the change. In both cases, Oracle will be visiting the same little clump of about ten

blocks in the table—but the extra column changes the order in which the rows are visited

(which is what the clustering_factor is about), so the cost changes, and in the second case the

execution plan changes for the worse.

We start with the execution plans for first query (before and after change), and note that

the cost of the query does drop in a way that could reasonably represent the effect of the higher

precision of the index:

Execution Plan (9.2.0.6 autotrace – first query - original index)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=12 Card=1 Bytes=14)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=12 Card=8 Bytes=112)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=2 Card=500)

106 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

Execution Plan (9.2.0.6 autotrace – first query - modified index)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=7 Card=1 Bytes=14)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=7 Card=8 Bytes=112)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=1 Card=8)

And now here are execution plans for second query (before and after change), which high-

light the disaster that can occur when the clustering_factor no longer represents the original

purpose of the index:

Execution Plan (9.2.0.6 autotrace – second query - original index)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=19 Card=60 Bytes=1320)

 1 0 SORT (GROUP BY) (Cost=19 Card=60 Bytes=1320)

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=12 Card=500 Bytes=11000)

 3 2 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=2 Card=500)

Execution Plan (9.2.0.6 autotrace – second query - modified index)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=36 Card=60 Bytes=1320)

 1 0 SORT (GROUP BY) (Cost=36 Card=60 Bytes=1320)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=29 Card=500 Bytes=11000)

As you can see, the deceptively high clustering_factor has camouflaged the locality of

the data, and the optimizer has switched from a precise indexed access path to a much more

extravagant table scan.

Correcting the Statistics
So far I’ve spent all my time describing the way in which the clustering_factor, as calculated

by Oracle, may not be truly representative of the way the data really is clustered in the table.

With some understanding of the data and the way Oracle does its arithmetic, you can correct

the problem, and I’d like to stress the word correct.

The sys_op_countchg() Technique

It is possible to tell Oracle anything you like about the statistics of your system, overriding any

of the figures that it has collected; but the smart thing to do is to identify the numbers that are

wrong and supply the right ones. It is not sensible simply to fiddle around creating numbers

until some piece of SQL happens to work the way you want.

It is easy to hack the statistics, but your aim should be to give Oracle a better idea of the

truth—because with an accurate image of your data, and the way you use it, the optimizer can

do a better job.

Since the only thing I’ve been talking about in this chapter is the clustering_factor, I’m

going to tell you how to modify it, and what to modify it to.

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 107

Look at the package dbms_stats. It contains two critical classes of procedures: get_xxx_stats

and set_xxx_stats. For the purposes of this chapter, we are interested only in get_index_stats

and set_index_stats. In principle, we can always adjust the clustering_factor of an index by

a piece of PL/SQL that reads the statistics from the data dictionary, modifies some of them,

and writes the modified values back to the data dictionary, for example (script hack_stats.sql

in the online code suite):

declare

 m_numrows number;

 m_numlblks number;

 m_numdist number;

 m_avglblk number;

 m_avgdblk number;

 m_clstfct number;

 m_indlevel number;

begin

 dbms_stats.get_index_stats(

 ownname => NULL,

 indname => '{index_name}',

 numrows => m_numrows,

 numlblks => m_numlblks,

 numdist => m_numdist,

 avglblk => m_avglblk,

 avgdblk => m_avgdblk,

 clstfct => m_clstfct,

 indlevel => m_indlevel

);

 m_clsfct := {something completely different};

 dbms_stats.set_index_stats(

 ownname => NULL,

 indname => '{index_name}',

 numrows => m_numrows,

 numlblks => m_numlblks,

 numdist => m_numdist,

 avglblk => m_avglblk,

 avgdblk => m_avgdblk,

 clstfct => m_clstfct,

 indlevel => m_indlevel

);

end;

/

108 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

HACKING THE DATA DICTIONARY

There is an enormous difference between hacking the data dictionary with a published, documented PL/SQL

API, and hacking the data dictionary with statements like update col$ set

In the former case, you may not understand what you are telling Oracle about your system, but at least

you will be leaving the data dictionary in a self-consistent state. In the latter case, (a) you don’t know how

many other changes you should have made at the same time, and (b) you don’t know if all your changes will

actually arrive at the data dictionary, as it seems to get refreshed from the dictionary cache (v$rowcache) in

a fairly random way, so (c) you can very easily leave your database in an inconsistent state that will lead to

subsequence security breaches, crashes, and silent yet extensive data corruption.

The technique is simple; the subtle bit is deciding what value you should use for

clustering_factor.

The answer to this question depends on the circumstances. However, let’s start with a

completely different question: how, exactly, does Oracle work out the clustering_factor? Call

dbms_stats.gather_index_stats() with sql_trace switched on, and if you are running Oracle

9i, you will find out. For a simple B-tree index, the trace file will contain a piece of SQL looking

something like the following (try this after running script base_line.sql):

/*

 Do this from an SQL*Plus session then examine the trace file.

alter session set sql_trace true;

begin

 dbms_stats.gather_index_stats(

 user,

 't1_i1',

 estimate_percent => null

);

end;

/

exit

*/

 select /*+

 cursor_sharing_exact

 dynamic_sampling(0)

 no_monitoring

 no_expand

 index(t,"T1_I1")

 noparallel_index(t,"T1_I1")

 */

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 109

 count(*) as nrw,

 count(distinct sys_op_lbid(49721,'L',t.rowid)) as nlb,

 count(

 distinct hextoraw(

 sys_op_descend("DATE_ORD")||sys_op_descend("SEQ_ORD")

)

) as ndk,

 sys_op_countchg(substrb(t.rowid,1,15),1) as clf

from

 "TEST_USER"."T1" t

where

 "DATE_ORD" is not null

or "SEQ_ORD" is not null

;

In the preceding query, the column nrw turns into the number of rows in the index (user_

indexes.num_rows), nlb turns into the number of leaf blocks (user_indexes.leaf_blocks), ndk

becomes the number of distinct keys in the index (user_indexes.distinct_keys), and clf

becomes the clustering_factor (user_indexes.clustering_factor).

The appearance of the sys_op_descend() function came as a bit of a surprise; it is the function

normally used to generate the values stored for indexes with descending columns, but I think it

is used here to insert a separator byte between the columns of a multicolumn index, so that the

counts will be able to distinguish between items like ('aaa','b') and ('aa','ab')—which

would otherwise appear to be identical.

The sys_op_lbid() function seems to return a leaf block ID—and the exact meaning of the

ID returned is dependent on the single letter parameter. In this example, 49721 is the object_id

of the index named in the index hint, and the effect of the L parameter seems to be to return the

absolute address of the first entry of the leaf block in which the supplied table rowid exists.

(There are options for index organized tables [IOTs], secondary indexes on IOTs, bitmap

indexes, partitioned indexes, and so on.)

But the most interesting function for our purposes is sys_op_countchg(). Judging from its

name, this function is probably counting changes, and the first input parameter is the block ID

portion (object_id, relative file number, and block number) of the table’s rowid, so the function is

clearly matching our notional description of how the clustering_factor is calculated. But

what is that 1 we see as the second parameter?

When I first understood how the clustering_factor was defined, I soon realized that its

biggest flaw was that Oracle wasn’t remembering recent history as it walked the index; it only

remembered the previous table block so that it could check whether the latest row was in the

same table block as last time or in a new table block. So when I saw this function, my first guess

(or hope) was that the second parameter was a method of telling Oracle to remember a list of

previous block visits as it walked the index.

Remember the table that I created in script freelists.sql, with a freelists set to 5. Watch

what happens if we run Oracle’s own stats collection query (rewritten and tidied as follows)

against this table—using different values for that second parameter (script clufac_calc.sql in

the online code suite):

110 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

select /*+

 cursor_sharing_exact

 dynamic_sampling(0)

 no_monitoring

 no_expand

 index (t,"T1_I1")

 noparallel_index(t,"T1_I1")

 */

 sys_op_countchg(substrb(t.rowid,1,15),&m_history) as clf

from

 "TEST_USER"."T1" t

where

 "DATE_ORD" is not null

or "SEQ_ORD" is not null

;

Enter value for m_history: 5

 CLF

 746

1 row selected.

I had to use a substitution parameter while running this query from a simple SQL*Plus

session, as the function crashed if I tried to code the query into a PL/SQL loop with a PL/SQL

variable as the input. I ran the query seven times in a row, entering a different value for

m_history each time, and have summarized the results of the test in Table 5-2. The first set of

results comes from a run of freelists.sql where I had used five concurrent processes and

been lucky enough to get perfect separation. The second set comes from a run where I doubled

the number of concurrent processes from 5 to 10, with a less-fortunate separation of

processes—giving me 52,000 rows and 1,502 blocks in the table.

Table 5-2. Effects of Changing the Mystery Parameter on sys_op_countchg

m_history Calculated CLF

(5 Processes)

Calculated CLF

(10 Processes)

1 26,000 43,615

2 26,000 34,533

3 26,000 25,652

4 25,948 16,835

5 746 3,212

6 746 1,742

7 746 1,496

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 111

Just as the value I enter for m_history matches the freelists setting for the table, the

clustering_factor suddenly changes from much too big to really quite reasonable! It’s hard to

believe that this is entirely a coincidence.

So using Oracle’s own function for calculating the clustering_factor, but substituting

the freelists value for the table, may be a valid method for correcting some errors in the

clustering_factor for indexes on strongly sequenced data. (The same strategy applies if you

use multiple freelist groups—but multiply freelists by freelist groups to set the second

parameter.)

Can a similar strategy be used to find a modified clustering_factor in other circumstances?

I think the answer is a cautious “yes” for tables that are in ASSM tablespaces.

Remember that Oracle currently allocates and formats 16 new blocks at a time when using

automatic segment space management (even when the extent sizes are very large, apparently).

This means that new data will be roughly scattered across groups of 16 blocks, rather than

being tightly packed.

Calling Oracle’s sys_op_countchg() function with a parameter of 16 could be enough to

produce a reasonable clustering_factor where Oracle currently produces a meaningless one.

The value 16 should, however, be used as an upper bound. If your real degree of concurrency

is typically less than 16, then your actual degree of concurrency would probably be more

appropriate.

Whatever you do when experimenting with this function—don’t simply apply it across the

board to all indexes, or even all indexes on a particular table. There will probably be just a

handful of critical indexes where it is a good way of telling Oracle a little more of the truth about

your system—in other cases you will simply be confusing the issue.

Informal Strategies

We still have to deal with problems like reverse key indexes, indexes with added columns, and

indexes where the column order has been rearranged. Playing around with the sys_op_countchg()

function is not going to help in these cases.

However, if you consider the examples in this chapter, you will see that the they have a

common thread to them. In each case the driving use of the index comes from a subset of

the columns.

In the reverse key example, (date_ord, seq_no), the critical use of the index depended on

only the date_ord column and the presence of the seq_no added no precision to our queries.

In the example about adding extra columns, (date_movement, product_id), the critical use

of the index was the date_movement; the product_id was a little tweak to enhance performance

(for certain queries).

In the example of rearranging columns, (scattered, clustered), the argument is weaker,

but we can detect that an underlying pattern in the table is strongly dictated by the clustered

column, regardless of the fact that the index columns are not ordered in a way that picks this up.

In all three cases, you could argue that a more appropriate clustering_factor could be

found by creating an index using only the driving columns, calculating the clustering_factor

for that index, and transferring the result to the original index. (You might want to do this on a

backup copy of the database, of course.)

I think the argument for doing this is very good in the first two cases mentioned previously,

but a little weak for the third case. In the third case, the validity of the argument depends much

more on the actual use of the index, and the nature of the queries. However, when the driving

112 C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R

column argument fails, you may be able to fall back to the sys_op_countchg() technique. In the

example, the data is grouped by the clustered column with a group of 9 or 10 blocks—calling

the sys_op_countchg() function with the value 9 may be the best way of finding an appropriate

clustering_factor for your use of that index.

Finally, there is the option of just knowing the right answer. If you know that a typical key

value will find all its data in (say) 5 table blocks, but Oracle thinks it will have to visit 100 table

blocks, then you can simply divide the clustering_factor by 20 to tell Oracle the truth. To find

out how many table blocks Oracle thinks it has to visit, simply look at the column user_indexes.

avg_data_blocks_per_key, which is simply a restated form of the clustering_factor, calcu-

lated as round (clustering_factor / distinct_keys).

Loose Ends
There are many other cases to consider if you want to produce a complete picture of how the

clustering_factor can affect the optimizer, and I don’t have space to go into them, but here’s

a thought for the future. Oracle 10g has introduced a mechanism to compact a table online. This

only works for a table with row movement enabled that is stored in a tablespace using ASSM.

You might use a sequence of commands like the following to compact a table:

alter table x enable row movement;

alter table x shrink space compact; -- moves rows around

alter table x shrink space; -- drops the high water mark

Before you rush into using this feature, just remember that it allows you to reclaim space

by filling holes at the start of the table with data moved from the end of the table. In other

words, any natural clustering of data based on arrival time could be lost as data is moved one

row at a time from one end of the table to the other. Be careful about the effect this could have

on the clustering_factor and desirability of the indexes on such a table.

Summary
The clustering_factor is very important for costing index range scans; but there are some

features of Oracle, and some performance-related strategies, that result in an unsuitable value

for the clustering_factor.

In many cases, we can predict the problems that are likely to happen, and use alternative

methods for generating a more appropriate clustering_factor. We can always use the

dbms_stats package to patch a correct clustering_factor into place.

If the clustering_factor is exaggerated because of multiple freelists, or the use of ASSM,

then you can use Oracle’s internal code for generating the clustering_factor with a modified

value for the second parameter of the sys_op_countchg() function to get a more realistic value.

If the clustering_factor is exaggerated because of reverse key indexes, added columns,

or even column reordering, then you may be able to generate a value based on knowing that

the real functionality of the index relies on a subset of the columns. If necessary, build the

reduced index on the backup data set, generate the correct clustering_factor, and transfer it

to the production index.

Adjusting the clustering_factor really isn’t hacking or cheating; it is simply ensuring that

the optimizer has better information than it can derive (at present) for itself.

C H A P T E R 5 ■ T H E C L U S T E R I N G F A C T O R 113

Test Cases
The files in the download for this chapter are shown in Table 5-3.

Table 5-3. Chapter 5 Test Cases

Script Comments

base_line.sql Script to create the baseline test with freelists set to 1

free_lists.sql Repeats the test with freelists set to 5

reversed_ind.sql Repeats the test and then reverses the index

reverse.sql SQL to dump a list of numbers sorted by their reversed internal form

assm_test.sql Repeats the test case in a tablespace set to ASSM

flg.sql Repeats the test with freelists set to two and freelist groups set
to three

col_order.sql Demonstration of how changing the column order affects the
clustering_factor

extra_col.sql Demonstration of the effects of adding a column to an existing index

hack_stats.sql Script to modify statistics directly on the data dictionary

clufac_calc.sql The SQL used by the dbms_stats package to calculate the
clustering_factor

setenv.sql Sets a standardized environment for SQL*Plus

115

■ ■ ■

C H A P T E R 6

Selectivity Issues

So far, I have stuck with all the easy options. I’ve been using numeric data, avoiding nulls,

generating nice data distributions, and taking half a dozen other routes to making the optimizer

behave well.

However, there are numerous ways in which the arithmetic works as I’ve described but

still produces results that look completely wrong. In this chapter, I discuss the commonest

reasons why the standard selectivity calculations produce unsuitable answers, and how you

can (sometimes) bypass the problem. I also discuss a couple of features that may cause the

optimizer to apply the arithmetic to the wrong predicates.

In Chapter 3, I avoided going into details about histograms. I’m still going to avoid them

here. The effects of (the two kinds of) histograms add yet another layer of complexity to what’s

going on in the selectivity calculations, and there are plenty of oddities to clear up before we

have to face histograms.

I will start by showing you how to apply the standard formula to date and character types,

and then discuss what happens if we store data in columns of the wrong data type. We can then

move on to the ways in which “special values” can cause problems, and close with cases where

Oracle does arithmetic with predicates that you didn’t know you had.

Different Data Types
We have been using the basic selectivity formula on numeric data types only, so far. The time

has come to turn to a couple of other common data types, just in case there are any differences

we need to be aware of.

We have been using the basic formula for the selectivity of a range-based predicate, and

know that this varies slightly depending on whether you have zero, one, or two closed (meaning the

equality in <=, >=) ends to your range. Using N as the number of closed ends, the version of the

formula that uses user_tab_columns.num_distinct can be written as

 (required range) / (column high value - column low value) + N / num_distinct

For example, in a column with 1,000 different (integer) values ranging from 1 to 1000, and

the pair of predicates colX > 10 and colX <= 20, you have one closed end (<=), and the formula

would give you

 (20 - 10) / (1000 - 1) + 1/1000 = 10/999 + 1/1000

Intuition will tell you that this example hasn’t produced quite the right answer since we

probably wanted 10 possible values out of 1,000, but it’s pretty close.

116 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

Date Values

Things don’t change much if you start to use date data types. Consider a date-only column

holding values from 1 January 2000 to 31 December 2004; a predicate date_col between 30th

Dec 2002 and 5th Jan 2003 would then give you a selectivity of

 (5th Jan 2003 - 30th Dec 2002) / (31st Dec 2004 - 1st Jan 2000) +

 2/(number of different dates)

Fortunately, Oracle can do proper date arithmetic, so this turns into the following:

 6 / 1826 + 2/1827

Again, this is not quite the right answer, as a human interpretation of the requirements

would have spotted that you were selecting 7 dates out of a list of 1,827, with a selectivity of

exactly 7/1,827.

The error in both these examples is just demonstrating the problem raised in Chapter 3.

Oracle is using arithmetic for continuous data, but in many cases people use discrete data (i.e.,

lists of specific values). When the number of distinct values in our lists grows large, of course,

the error in the calculation is usually small—but for lists with only a few distinct values, you

need to be careful.

Character Values

Let’s try one more example. What does it mean to measure the total range of a character

column where the lowest value is ‘Aardvark’ and the highest is ‘Zymurgy’? And how do you

work out the difference between two words when the predicate is colC between 'Apple' and

'Blueberry'? To find the answers to these questions, a good place to start looking is the

user_tab_histograms view where you discover that Oracle uses a numeric representation of

character strings. (We aren’t going to discuss what the optimizer does with this information,

we are merely going to take advantage of the fact that we can see the values that have been

generated.)

In a test table, t1, with two columns, one of type varchar2(10) and one of type char(10),

I have inserted the strings 'Aardvark', 'Apple', 'Blueberry', and 'Zymurgy' in both columns,

and then generated statistics—including histograms.

Columns of type char(n) are space padded to their full declared length (apart from the

special case when the contents are null), which is why I have included an example of a char(n)

in this test. As usual, my demonstration environment starts with an 8KB block size, locally

managed tablespaces with a 1MB extent, manual segment space management, and system

statistics (cpu_costing) disabled (see script char_types.sql in the online code suite):

create table t1 (

 v10 varchar2(10),

 c10 char(10)

)

;

-- Insert the data and generate histograms (see script in online code suite)

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 117

select

 column_name,

 endpoint_number,

 endpoint_value

from

 user_tab_histograms

where

 table_name = 'T1'

order by

 column_name,

 endpoint_Number

;

Col End no End Value

----- ------ --

C10 1 339,475,752,638,459,000,000,000,000,000,000,000 -- 'Aardvark '

 2 339,779,832,781,209,000,000,000,000,000,000,000 -- 'Apple '

 3 344,891,393,972,447,000,000,000,000,000,000,000 -- 'Blueberry '

 4 469,769,561,047,943,000,000,000,000,000,000,000 -- 'Zymurgy '

V10 1 339,475,752,638,459,000,000,000,000,000,000,000 -- 'Aardvark'

 2 339,779,832,781,057,000,000,000,000,000,000,000 -- 'Apple'

 3 344,891,393,972,447,000,000,000,000,000,000,000 -- 'Blueberry'

 4 469,769,561,047,943,000,000,000,000,000,000,000 -- 'Zymurgy'

It’s not immediately obvious what these numbers represent, but we can get further clues

from the user_tab_columns view and (going back to 8i) the user_tab_histograms view where

the column endpoint_actual_value is always populated.

■Note In 9i, Oracle only populates the endpoint_actual_value column of the histogram views if there

is at least one pair of values that, roughly speaking, are identical for the first six characters—which is why I

have used 8i to generate the output for this example.

Oracle appears to behave as follows:

• Extract a maximum of 32 bytes from the column; this representation of the column value

is how the low_value, high_value and end_point_actual values are stored.

• Extract the first 15 bytes from the 32, padding with zeros at the right if necessary.

• Convert the 15 bytes hex number to decimal and round to 15 significant figures.

Let’s take a worked example—the string 'Aardvark'—to see if we can end up with the

value stored in the histogram:

118 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

• 'Aardvark', when dumped in hex from the char(10) column, contains the following list

of byte values (note the 20,20 space padding that is imposed by the char(10) definition):

'41,61,72,64,76,61,72,6B,20,20'.

• Since this is less than 15 bytes, we append a few zeros to produce the number

0x416172647661726B20200000000000. (If the column had been declared as char(40)

the value would already have been padded with spaces (0x20) up to 40 characters, so

we would stop at the fifteenth byte, and the value we would use would look like

0x416172647661726B20202020202020.)

• Converting this rather large hex number to decimal we get

339,475,752,638,459,043,065,991,628,037,554,176.

• And if we throw away everything after the first 15 digits then, as required, we get

339,475,752,638,459,000,000,000,000,000,000,000.

Looking at the rounding, you might notice that after about the first six or seven characters

of a string, the rest of the letters don’t have any impact on the numeric representation used by

the optimizer—which is why the numeric values for 'Apple' are the only ones that vary when

comparing the char(10) with the varchar2(10) versions. We don’t really need to go into any

more detail—but you could imagine that the optimizer might have trouble coping with data

consisting (for example) of URLs, when lots of them start with http://. (A problem ameliorated,

but not solved, by the fact that the first 32 characters of the URL would be stored as the

endpoint_actual_value.)

The problem can be much worse, in fact, because of the increasing popularity of national

language support. If you pick a multibyte character set for your database character set, then

Oracle will be using the first 15 bytes of the string, not the first 15 characters. So the precision

gets even worse. (Of course, if you switch to a fixed-width multibyte character set, all your char-

acter data gets longer, so this introduces a whole new area of performance testing anyway.) See

script nchar_types.sql in the online code suite.

Character strings can cause massive problems with range-based queries, but the problems

show up most commonly when you aren’t really thinking about strings—as you will see in the

next section.

Daft Data Types

One of the first examples in this chapter examined the predicate date_col between 30th Dec

2002 and 5th Jan 2003 on a table holding data from 1 January 2000 to 31 December 2004, and

we saw how the optimizer could work out the selectivity of such a predicate. But let’s see how

things can go wrong in popular implementations of storing dates. We create and populate a

table with one row per date over a five-year date range (see script date_oddity.sql in the online

code suite).

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 119

create table t1 (

 d1 date,

 n1 number(8),

 v1 varchar2(8)

)

;

insert into t1

select

 d1,

 to_number(to_char(d1,'yyyymmdd')),

 to_char(d1,'yyyymmdd')

from

 (

 select

 to_date('31-Dec-1999') + rownum d1

 from

 all_objects

 where

 rownum <= 1827

)

;

In this example, I have stored the same information in three different ways. The first

column is a proper Oracle date. The second and third columns are popular options for the

database-independent applications that tend to store the date as a character string in the

format YYYYMMDD (year/month/day) or its numeric equivalent. How does this affect the way the

optimizer copes with the following simple queries?

select *

from t1

where d1 between to_date('30-Dec-2002','dd-mon-yyyy')

 and to_date('05-Jan-2003','dd-mon-yyyy')

;

select *

from t1

where n1 between 20021230 and 20030105

;

select *

from t1

where v1 between '20021230' and '20030105'

;

120 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

In all three cases, Oracle will have to do a full tablescan as we haven’t created any indexes—

but how many rows does the optimizer think the query will return? Run each query through

autotrace, and check the cardinality. Table 6-1 shows the results for a few different versions

of Oracle.

The proper date column has produced the right answer (nearly); the error is the usual one

of the optimizer using arithmetic appropriate to continuously varying values when we are

really handling a relatively small list of discrete values. Oracle understands what dates are,

what they mean, and how to do arithmetic with them.

But what’s gone wrong with the numeric and character versions? Nothing, really—we’ve

just hidden from the optimizer the fact that they are really holding dates, so the optimizer has

used the standard arithmetic on a data set that is a little peculiar. Remember the standard

formula for a range—in this case using the version that is closed at both ends (between is a

short-hand for '>= X and <= Y'). Let’s apply it for the numeric case:

Selectivity = (required range) / (high value - low value) + 2/num_distinct

 = (20030105 - 20021230) / (20041231 - 20000101) + 2/1827

 = 8875 / 41130 + 2/1827

 = 0.215779 + 0.001095

 = 0.216874 -- more than 20% of the data apparently!

To finish things off, multiply the selectivity by the number of rows in the table (1,827) and

we get 1,827 * 0.216874 = 396.228.

The optimizer doesn’t know that we are dealing with dates, so although we see numbers

that we can recognize as a date range that crosses a month boundary or a year boundary, the

optimizer doesn’t see this as “the next day,” it simply sees a huge gap—and we haven’t given

the optimizer any information about gaps. It’s inevitable that the arithmetic will go wrong.

To make it easier to show that the value of 457 reported for the character types in older

versions is following the standard formulae, I created a PL/SQL function to apply the conver-

sion algorithm I described earlier on in the chapter (see script char_fun.sql in the online code

suite). Consequently, I can just run the following SQL statement to work out the cardinality:

Table 6-1. Different Data Types Give Different Cardinality

Column Type Cardinality

 8.1.7.4

Cardinality

 9.2.0.4/10.1.0.2

Cardinality

 9.2.0.6 /10.1.0.4

Date 9 8 8

Numeric 397 396 396

Character 457 457 396

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 121

select

 round(

 1827 * (

 2/1827 +

 (cbo_char_value('20030105') - cbo_char_value('20021230')) /

 (cbo_char_value('20041231') - cbo_char_value('20000101'))

),2

) cardinality

from

 dual

;

CARDINALITY

 456.51

Of course, you will have noticed that the cardinality changes as you move to 9.2.0.6 and

10.1.0.4 (so watch out on the upgrades), and the nature of the change seems to be rather

devious. Somehow, Oracle seems to have treated the varchar2 column and its predicate values

as if they were numeric. It is possible that a programmer in the CBO group has slipped in a

“cunning guess” tweak to the optimizer in this very special case. The tweak disappears as soon

as you format the date-like string to include nonnumeric characters (e.g., '2002-01-02').

If your application suffers from this use of incorrect data types, you may be able to perform

some damage limitation by creating histograms on the critical columns. In this example, the

numeric and character columns covered 60 months, so if you drew a picture of the data, you

would see 60 spikes and 59 gaps. Try building a histogram of about 120 buckets—or 180, or

240—and see what happens.

Table 6-2 shows you the effect of building a histogram with 120 buckets on the two non-date

columns. The improvement is significant—though the answers are still far from perfect. The

slight difference between 8i and the other versions is due to a change in the way Oracle generates

histograms, which we will examine in Chapter 7.

Another piece of general-purpose intervention that may help the optimizer to arrive at

roughly the right selectivity is to introduce function-based indexes (FBI). Of course, adding an

index to a table is an overhead that should be considered carefully; but if you have SQL that

needs to get the selectivity correct (and it isn’t appropriate to slip in a cardinality() or

selectivity() hint), then you may be able to rewrite your code to cater to the presence of function-

based indexes.

For example, create an index on to_date(v1,'yyyymmdd'):

Table 6-2. Histograms Can Help Overcome Incorrect Data Typing

Column Type Original 8i 9i/10g

Numeric 397/398 16 15

Character 457/397 16 15

122 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

create index t1_v1 on t1(to_date(v1,'yyyymmdd'));

begin

 dbms_stats.gather_index_stats(

 ownname => user,

 indname =>'T1_V1',

 estimate_percent => null

);

end;

/

begin

 dbms_stats.gather_table_stats(

 ownname => user,

 tabname =>'T1',

 cascade => false,

 estimate_percent => null,

 method_opt => 'for all hidden columns size 1'

);

end;

/

I have used a call to the gather_index_stats() procedure, followed by a call to the

gather_table_stats() procedure, with the method_opt of for all hidden columns. From 9i

onwards, you might want to query view user_tab_cols to identify just those virtual columns

that are in need of statistics, rather than hitting every column in the table.

With this setup in place, you finally convert your code from

where v1 between '20021203' and '20030105'

to

where to_date(v1,'yyyymmdd') between to_date('30-Dec-2002','dd-mon-yyyy')

 and to_date('05-Jan-2003','dd-mon-yyyy')

The optimizer will be able to use the statistics on the virtual column defined in your index

to come up with the correct cardinality, even if the execution plan doesn’t use the index.

Leading Zeros
One of the other ways in which the data-type error rears its ugly head is in the use of synthetic

keys (also known as surrogate keys, or meaningless IDs). Various problems start to appear in

more complex systems when meaningless numbers are injected into the data, and these can be

exaggerated when the synthetic number is actually stored as a fixed length character column

with leading zeros.

Take, for example, a site that I visited recently that had no proper primary keys, but was

using a char(18) for every identifier in the system. At the time of writing, a few of the sequences

had reached the million mark, so a typical stored value would be 000000000001000123. Most of

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 123

the queries on a system using this type of strategy are likely to be of the form where id =

{string constant}; but if they start using range-based predicates, strange performance prob-

lems are likely to appear.

The script char_seq.sql in the online code suite emulates the situation by creating a table

of two million rows with an id column that is generated by zero-padding a sequence number.

When I first wrote this section, the current versions of Oracle were 9.2.0.4 and 10.1.0.2, and

this is the result I got after generating simple statistics and running the following query with

autotrace on:

select

 *

from t1

where

 id between '000000000000060000'

 and '000000000000070000'

;

Execution Plan (9.2.0.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1039 Card=17 Bytes=323)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=1039 Card=17 Bytes=323)

Note the extremely low calculated cardinality (17 rows) for a query that is visibly supposed

to return about 10,000 rows (the numbers varied slightly for other versions of Oracle, but were

still wrong by two or three orders of magnitude).

As with the problem of using character or number types for dates, I was able to reduce the

error by creating histograms, or using function-based indexes. With a histogram of the default

75 buckets, the execution plan showed an estimated cardinality of 8,924—which is at least in

the right ballpark.

■Note The default action for 10g when gathering table statistics is to use the auto_sample_size to

generate the histogram, but in this particular example this resulted in the calculated cardinality coming out as 1!

After creating an index that included the expression to_number(id) as one of its columns,

regenerating the statistics (without a histogram), and adjusting the text of the query accord-

ingly, the calculated cardinality was close to 10,000 for 9i and 10g (but only 5,000 under 8i).

But time passes, and by the time I came to reviewing this chapter, I was running 9.2.0.6

and 10.1.0.4, and everything had changed. This is the execution plan I got in 9.2.0.6:

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1039 Card=10002 Bytes=220044)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=1039 Card=10002 Bytes=220044)

124 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

Magically, the cardinality is correct. And it’s the same little tweak that appeared in the

section on dates. As far as I can make out, if the user_tab_columns.low_value, user_tab_columns.

high_value, and literal predicate values look like numbers, then the optimizer works out the

selectivity as if it were handling a numeric column.

So, for the purposes of making the demonstration in 9.2.0.6 and 10.1.0.4 display the

same problems it used to under earlier versions of Oracle, I had to modify the SQL in script

char_seq.sql so that the values started with an A.

Deadly Defaults
Imagine you have accumulated five years’ worth of data in your accounting system—say from

1 January 2000 to 31 December 2004—and decide to run a report spanning all the data in 2003.

It seems likely that all the queries that have a predicate where date_closed between 1st Jan 2003

and 31st Dec 2003 should be using tablescans since they are likely to be querying nearly 20%

of the data.

You’ve stored the dates as real Oracle date columns—so what could possibly go wrong?

(We’ll assume that the accounting system isn’t suffering from the extreme treatment that can

occasionally result in very large tables holding very small amounts of data).

Alas, even when database-independent applications decide to use Oracle date types prop-

erly, they may still try to avoid null values. Rather than leaving any columns null, every nullable

column is given a default value (usually through front-end code rather than using the relevant

database feature). So what might the average database-independent developer choose as a good

value to represent a null date? How about something far in the future, like 31 December 4000?

But remember how the optimizer calculates the selectivity of range scans. The queries that

you know are obviously supposed to find 20% of the data (one year out of five) now appear to

the optimizer to be much more selective than you think. Doing a quick calculation for the

range scan selectivity, you believe the selectivity is

 (31 Dec 2003 - 01 Jan 2003) / (31 Dec 2004 - 01 Jan 2000) + 2/1827 = 0.20044

But, given the extra, far-out, value, the optimizer thinks the selectivity is

 (31 Dec 2003 - 01 Jan 2003) / (31 Dec 4000 - 01 Jan 2000) + 2/1828 = 0.00159

With this misleading value for the selectivity (which translates into a dramatically incorrect

cardinality), it’s not surprising if the optimizer manages to pick the wrong path through the

data. And it takes just one row with this unfortunate default value to make the statistics look

like rubbish.

The solution, again, is to create a histogram so that the optimizer can see an odd data

distribution. The test script (see defaults.sql in the online code suite) creates a table with

approximately 100 rows per day for the five years, but every thousandth row is set to the special

value 31 December 4000.

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 125

create table t1

as

/*

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 2000

)

*/

select

 /*+ ordered use_nl(v2) */

 decode(

 mod(rownum - 1,1000),

 0,to_date('31-Dec-4000'),

 to_date('01-Jan-2000') + trunc((rownum - 1)/100)

) date_closed

from

 generator v1,

 generator v2

where

 rownum <= 1827 * 100

;

Check the cardinalities of the two execution plans generated for the following query. The

first plan was the result of collecting simple statistics. The second appeared after generating a

histogram of the default 75 buckets on the date_closed column:

select

 *

from t1

where date_closed between to_date('01-Jan-2003','dd-mon-yyyy')

 and to_date('31-Dec-2003','dd-mon-yyyy')

;

Execution Plan (No histogram 9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=46 Card=291 Bytes=2328)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=46 Card=291 Bytes=2328)

Execution Plan (With histogram 9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=46 Card=36320 Bytes=290560)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=46 Card=36320 Bytes=290560)

126 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

Note how the second execution plan, with the histogram in place, shows a calculated

cardinality that is very close to the 36,500 rows we would expect for a year’s worth of data at 100

rows per day. The first execution plan, in contrast, has a cardinality that is far too small. In more

complex queries, this type of error is likely to result in a ridiculous execution plan being produced.

Discrete Dangers
There are other problems with outlying values. The use of an extreme value to replace a null is

not the only reason for a slightly odd data distribution that ends up causing bad execution

plans. The same effect can also appear because people sometimes use an unusual value to

represent “special events.”

Consider, for example, an accounting system that has a period column—storing data

for periods 1 to 12 plus a period (for adjustments) that is given a number of 99. The script

discrete_01.sql in the online code suite emulates this (and also includes a second option,

where the special period is number 13):

create table t1

as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 1000

)

select

 /*+ ordered use_nl(v2) */

 mod(rownum-1,13) period_01,

 mod(rownum-1,13) period_02

from

 generator v1,

 generator v2

where

 rownum <= 13000

;

update t1 set

 period_01 = 99,

 period_02 = 13

where

 period_01 = 0;

;

commit;

As you can see, I have set up a table with two period columns. Both of these columns hold

13 distinct values, with 1,000 rows for each value. But one column uses 13 (the next possible

integer) as its adjustments period, the other uses the far-out value of 99.

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 127

When we query the table for all the data in the second quarter (periods 4 to 6, say), we

know that we really want to see 3,000 rows. We can work out from the standard formula that

Oracle will predict the wrong cardinality because the formula is

num_rows * ((our_high - our_low) / (table_high - table_low) + 2 / num_distinct))

For the column period_01, using special value 99, this gives 13,000 * (2 / 98 + 2 / 13) = 2,265.306.

For the column period_02, using special value 13, this gives 13,000 * (2 / 12 + 2 / 13) = 4,166.667.

But when we test the query against period_01, we get the following:

select count(*)

from t1

where period_01 between 4 and 6

;

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=5 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=5 Card=1663 Bytes=4989)

The cardinality predicted by Oracle for the column with period 99 is 1,663, not the 2,266 we

expect from the standard formula. (The cardinality predicted by Oracle for the column with

period 13 does, however, match the 4,167 given by the formula.) It gets worse, because look

what happens with the four different quarters of the year in which we might be interested:

Period_01 between 1 and 3 Cardinality = 1,265 --

Period_01 between 4 and 6 Cardinality = 1,663 --

Period_01 between 7 and 9 Cardinality = 1,929 --

Period_01 between 10 and 12 Cardinality = 2,265 -- finally, one that’s right!

It is possible that this change in cardinality could make our execution plans change, for

no reason beyond the time of year we are running the query! (Assuming all other related data

distributions stay the same, of course.)

You might try a cunning trick to work around this problem. What happens if you change

the predicate to something that is equally valid—at least, from the perspective of your superior

knowledge of the data? (See script discrete_02.sql in the inline code source.)

select count(*)

from t1

where period_01 > 3 and period_01 < 7

;

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=5 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=5 Card=735 Bytes=2205)

128 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

The predicate in this query will also return the 3,000 rows we want, but only because we

have ensured that the values 4, 5, and 6 are the only values that can be found in the range. (I hope

there’s a constraint making sure that that’s true.) But Oracle predicts a cardinality of 735 (and

4,333 for the column that uses 13 as the adjustments period). What does the formula say when

we have open values (no equality at the ends):

num_rows * ((our_high - our_low) / (table_high - table_low))

This means we should see a cardinality of (14,000 * 4 / 98) = 531, not 735.

What we are seeing is a special case (with a built-in bug of its own), which I can summarize

in Table 6-3. By running a loop that checks every viable 3-period query against our funny column,

I can generate this table, showing the predicted cardinality and the difference between the

current row and the previous row in the table for corresponding pairs of predicates. (This is

from a 9.2.0.6 test—the figures from 8i are slightly different due to the usual rounding issues.)

Table 6-3. Range-based Predicates with a Strange Decay Pattern

Low High Between Low and High

 Cardinality (Change)

Low High > Low and < High

Cardinality (Change)

–2 0 1,000

–1 1 1,000 –2 2 1,000

0 2 1,133 (+133) –1 3 1,000

1 3 1,265 (+132) 0 4 1,000

2 4 1,398 (+133) 1 5 1

3 5 1,531 (+133) 2 6 867 (–133 from 1000)

4 6 1,663 (+132) 3 7 735 (–132)

5 7 1,796 (+133) 4 8 602 (–133)

6 8 1,929 (+133) 5 9 531 (–71)

7 9 2,061 (+132) 6 10 531

8 10 2,194 (+133)

9 11 2,265 (+71)

89 91 2,265

90 92 2,194 (–71)

91 93 2,061 (–133) 90 94 531

92 94 1,929 (–132) 91 95 531 (+71)

93 95 1,796 (–133) 92 96 602 (+133)

94 96 1,663 (–133) 93 97 735 (+133)

95 97 1,531 (–133) 94 98 867 (+132)

96 98 1,398 (–133) 95 99 1

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 129

I have lined up the rows so that in any one row, the two sets of predicates have the same

intent. For example, the line with the entries (4, 6, 1663, 3, 7, 735) represents the results from

the following predicates:

where period_01 between 4 and 6 -- card = 1663

where period_01 > 3 and period_01 < 7 -- card = 735

I have only included rows where there is some variation in the cardinalities as the range of

the predicates move along the original data set. Once you run a test and build a chart like this,

some details stand out very clearly, which I can summarize as follows:

• For a large fraction of the range between the column low and the column high, the stan-

dard formula applies—we get 2,265 and 531 as the computed cardinality. (Of course, we

know that neither answer matches the number of rows we will actually get, but the value

is at least consistent with the standard formula.)

• As the predicate falls outside the range of the column values, then the cardinality falls

back to num_rows / num_distinct. (13,000 / 13 = 1,000).

• The values in the greater than / less than columns for 1 through 5 and 95 through 99 (the

two points where our requested ranges just touches the column low and high respectively)

have to be the result of a piece of special case code, or a bug.

• All other values are a straight-line interpolation (adding roughly 133 per step) between

the standard value and the boundary value of num_rows / num_distinct.

• The step in the cardinality (133) is num_rows / (column high – column low) = 13,000 / 98.

It’s very satisfying to design a test that produces such a clear result so easily—but having

got this far, there really isn’t a lot of extra benefit in knowing exactly when the rules change or

even if the standard formula is actually more complex than I originally suggested. Perhaps the

standard formula includes a component that is very small in almost all cases, but becomes

visible at the boundaries and only when dealing with a small number of distinct values. Who

can guess what the rationale is for this odd-looking behavior.

I don’t know why we get these results, but for my personal benefit, I now know that in

cases where a critical column has a small number of distinct values and the range of the values

is large compared to the number of distinct values, then a between or greater than / less than

predicate on that column will behave badly—especially near the low and high values for the

column.

97 99 1,265 (–133) 96 1,000 (+133 from 867)

98 100 1,133 (–132) 97 1,000

99 101 1,000 (–133)

100 102 1,000

Table 6-3. Range-based Predicates with a Strange Decay Pattern

Low High Between Low and High

 Cardinality (Change)

Low High > Low and < High

Cardinality (Change)

130 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

The good news is this: if you create a histogram on the column in the test cases (see scripts

discrete_01a.sql and discrete_02a.sql in the online code suite), then the problems disappear

and Oracle gets the right answer every time.

10g Update

In Chapter 3, I mentioned the change that Oracle had introduced in 10.1.0.4 (very specifically)

to deal with column = constant when the constant was known to be outside the low/high range

for the column. The same effect has been introduced in range-based queries—and happened

to show itself when I was rerunning the discrete tests.

In the results shown in Table 6-3, you saw that the computed cardinality reaches 1,000 and

then stays constant as Oracle hits and passes the boundary of the low/high range in 9.2.0.6.

In 10.1.0.4, as we move the predicate further and further outside the low/high range for the

column, the cardinality drops off by approximately 10 for each unit change in our predicate.

Table 6-4 is a short extract from the top end of the range when we repeat the tests in discrete_

01.sql against a 10.1.0.4 database.

The rate of change represents a straight line from a cardinality of 1,000 down to a cardinality of

one—which will be reached when we are outside the low/high range by a distance equal to the

low/high range. In other words, because (high – low) = 98, Oracle’s model allows for the possibility

of data as far out as (low – 98) and (high + 98), but the further you are from the known range,

the less data you are likely to find.

Surprising sysdate
One of the biggest surprises you can get from simple selectivity calculations appears when you

start using one of the most popular pseudo-columns in Oracle, the sysdate.

There are 1,440 minutes in a day, so if you run the following SQL, you will get a table

holding four-and-one-half days’ worth of minutes (see script sysdate_01.sql in the online

code suite).

create table t1 as

Table 6-4. Cardinalities in 10.1.0.4 Change Outside the Column Low/High

Low High Between Low and High Low High >Low and < High

96 98 1,398 95 99 1

97 99 1,265 96 100 1,000

98 100 1,133 97 101 1,000

99 101 1,000 98 102 1,000

100 102 990 99 103 1,000

101 103 980 100 104 990

102 104 969 101 105 980

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 131

select

 rownum id,

 trunc(sysdate - 2) + (rownum-1)/1440 minutes,

 lpad(rownum,10) small_vc,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 6480

;

Clearly, then, queries with any of the predicates (a)–(d) in the following list should return

1,440 or 1,441 rows (one day plus the odd minute) and predicates (e)–(f) should return 2,880 or

2,881 rows (two days plus the odd minute).

a) where minutes between sysdate and sysdate + 1

b) where minutes between trunc(sysdate) and trunc(sysdate) + 1

c) where minutes between sysdate - 1 and sysdate

d) where minutes between trunc(sysdate) - 1 and trunc(sysdate)

e) where minutes between sysdate - 1 and sysdate + 1

f) where minutes between trunc(sysdate) - 1 and trunc(sysdate) + 1

So why, when you check the cardinality from explain plan, do you get the figures shown

in Table 6-5 (which will vary with time of day) when you run the queries at 12:00 p.m. on a 9i

system (with the usual sort of rounding differences creeping in an 8i system)?

These results are very inaccurate; moreover they are not even self-consistent; for example,

you would probably expect the cardinality of (e) to be pretty much the same as cardinality(a) +

cardinality(c). The reason, though, is simple. The optimizer treats sysdate (and trunc(sysdate)

and a few other functions of sysdate) as known constants at parse time, but sysdate + N

becomes an unknown, and gets the same treatment as a bind variable—which means a fixed

Table 6-5. Expressions Using sysdate Do Strange Things

Range Cardinality

 (9.2.0.6) at Noon

a) Sysdate and sysdate + 1 144

b) Trunc(sysdate) and trunc(sysdate) + 1 180

c) Sysdate - 1 and sysdate 180

d) Trunc(sysdate) - 1 and trunc(sysdate) 144

e) Sysdate - 1 and sysdate + 1 16

f) Trunc(sydate) - 1 and trunc(sysdate) + 1 16

132 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

5% selectivity. (Note, in particular, that sysdate + 0 will give a different cardinality from

sysdate.)

Moreover, having lost the ball on sysdate + N, the optimizer does its usual trick of turning

the between into a combination of two independent predicates, so minutes between sysdate -

1 and sysdate + 1 becomes

 minutes >= :bind1

and minutes <= :bind2

This, of course, has the fixed selectivity of 0.25% that was used for predicates (e) and (f) earlier.

As a further demonstration, let’s work out the arithmetic on example (a), which becomes

where minutes >= sysdate

and minutes <= {unknown bind value}

We had four-and-a-half days of minutes in the table, of which two days were future minutes

(assuming you ran the script at exactly midday), so the selectivity of the first predicate (with its

one closed end) is

 (required range) / (total range) + 1 / number of distinct values =

 (2 * 1440) / (4.5 * 1440) + 1/6480 =

 0.4445987654321

• The selectivity of the second predicate is 0.05 (as a bind variable).

• The combined selectivity is 0.05 * 0.4445987654321 = 0.02222994.

• The cardinality is therefore 0.02222994 * 6480 = 144.05—which matches the displayed

result.

So even when you store date information properly, it is possible for the optimizer to

produce silly arithmetic about the selectivity and cardinality. And queries for things like “all of

last week,” “the last 24 hours,” etc. must be some of the most popular forms of date query ever

used. This is one place where you might find there is a significant benefit in using literal strings

instead of bind variables or expressions such as trunc(sysdate) - 7.

And then there’s a problem when you upgrade to 10g, because the problem has been iden-

tified and addressed, and all the examples in Table 6-5 supply the appropriate cardinality.

What’s so bad about a problem being fixed? Ask yourself how much code you have got that

is currently doing the right thing because the optimizer is underestimating the cardinality by a

factor of 10 (examples (b) and (c)) or 80 (examples (e) and (f)). What’s going to happen to that

code when the optimizer suddenly gets the cardinality right? How many join orders are going

to reverse themselves; how many indexed access paths are going to become tablescans; how

many nested loops will turn into hash joins (and perhaps stop doing partition elimination on

the way)? The side effects of an optimizer bug fix may need rigorous testing.

Function Figures
All the examples we’ve looked at so far have been focused on predicates on stored columns—

but what happens if your SQL includes predicates like

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 133

upper(name) like 'SMITH%'

mod(number_col,10) = 0

pl_sql_func(last_name, first_name) = 'SMITH_JOHN'

Essentially, the arithmetic drops back to the fixed percentages that the optimizer uses

for bind variables—with a couple of minor variations—as shown in Table 6-6. See scripts

like_test.sql and fun_sel.sql in the online code suite.

I have listed a few examples that are all about character comparisons, but the same calcu-

lations hold for numeric and date values where appropriate.

Bear in mind that if you create function-based indexes, you are actually creating indexes

on virtual columns, and when you collect statistics on the table and its indexes, you can collect

statistics on the virtual columns at the same time. In these circumstances, a supplied predicate

such as

function(colx) = 0

is optimized as

SYS_NC00005$ = 0

And Oracle has statistics for the column named SYS_NC00005$ (visible in view user_tab_cols

from 9i onwards), so the normal selectivity arithmetic applies, and the preceding table is irrel-

evant. (It would be nice if Oracle Corp. added the option for unindexed virtual columns, so we

could have the benefit of correct statistics for commonly used expressions, without the need to

create the index.)

Table 6-6. Fixed Percentages Used for Selectivity on Character Expressions

Example of Predicate Treatment

function(colx) = 'SMITH' Fixed 1% selectivity.

not function(colx) = 'SMITH' Fixed 5% of selectivity.

function(colx) > 'SMITH' Fixed 5% of selectivity.

not function(colx) > 'SMITH' Fixed 5% of selectivity.

function(colx) >= 'SMITH' and function(colx) <
'SMITI''

Derived 0.25% selectivity (5% * 5%).

function(colx) between 'SMITHA' and 'SMITHZ' Derived 0.25% selectivity (5% * 5%).

not function(colx) between 'SMITHA' and 'SMITHZ' Derived 9.75% selectivity (5% + 5% – (5% * 5%)).

function(colx) like 'SMITH%' Fixed 5% of selectivity—contrary to obvious
interpretation, which would give 0.25%.

not function(colx) like 'SMITH%' Fixed 5% of selectivity.

function(colx) in ('SMITH','JONES') Derived 1.99% (1% + 1% – (1% * 1%)). Even in
10g, this function-driven in-list calculation uses
the erroneous formula from 8i.

134 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

Correlated Columns
So far, we have been reviewing data that has been produced by the random number generator,

and when we have indexed pairs of columns, they have been independent columns. We have

avoided any risk of confusing the issue by using dependent (correlated) columns in our predi-

cates, and this happens to be the way the optimizer assumes the world is always going to be.

When you have data where there is some statistical relationship between two columns in the

same table, odd results can appear.

To investigate the issue, we’re going to start with the same data set that we used in the first

test case of Chapter 4:

create table t1

as

select

 trunc(dbms_random.value(0,25)) n1, -- 25 values

 rpad('x',40) ind_pad,

 trunc(dbms_random.value(0,20)) n2, -- 20 values

 lpad(rownum,10,'0') small_vc,

 rpad('x',200) padding

from

 all_objects

where

 rownum <= 10000

;

This gives us two columns, n1 and n2, which between them probably have 500 different

combinations of values. But before creating the index and statistics on this data set, run a

simple update statement (the modified code can be found in the script dependent.sql in the

online code suite):

update t1 set n2 = n1;

We now have a data set where there are only 25 different distinct keys in the index:

(0, 'x ', 0)

(1, 'x ', 1)

 ...

(24, 'x ', 24)

The change to the data doesn’t have much impact on the actual size of the index (which

held 1,111 leaf blocks in the original test, but now holds 1,107 leaf blocks). With our knowledge

of what we have actually done to the data, we can work out that a query such as the following

will return 400 rows after hitting about 45 index leaf blocks (1/25 of the whole index) and an

awful lot of the table. But look what autotrace says:

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 135

select

 /*+ index(t1) */

 small_vc

from

 t1

where

 ind_pad = rpad('x',40)

and n1 = 2

and n2 = 2

;

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=14 Card=16 Bytes=928)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=14 Card=16 Bytes=928)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=4 Card=16)

According to the execution plan, this query will return 16 rows at a cost of 14 I/Os! Huge

underestimates of cost and cardinality can obviously cause performance problems. Not only

will this simple query be slower and more labor-intensive than the optimizer suggests, but if

the optimizer is looking for a driving table in a multitable join, this table looks like a good

choice to drive a nested loop because of the implication that the next stage of the query would

only have to be run 16 times, rather than 400.

This type of error also works (or rather, causes problems) the other way round, of course—

consider what happens when you change the where clause to the following:

where

 ind_pad = rpad('x',40)

and n1 = 1

and n2 = 3

Using our human insight into the data, we know that Oracle should be able to take just one

quick (three-block) trip down the index to find out at runtime that there are no rows to return.

But the optimizer still says the result set will be 16 rows at a cost of 14 I/Os.

Overestimates of cost and cardinality are just as bad as underestimates, because they may

make the optimizer miss the best choice of driving table.

CORRELATED COLUMNS AND DYNAMIC SAMPLING

Correlation between columns in the same table always causes problems if those columns appear together in

your where clause; the issue is not restricted to indexes. Sometimes you will be able to work around the

problem by using the optimizer_dynamic_sampling parameter, or the dynamic_sampling hint (both of

which appeared at some stage in 9i) to instruct Oracle to take a run-time sample of 32 or more blocks from

critical tables to see what fraction of the rows matches your where clause.

136 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

One of the very strange things about this problem when it appears in indexes is that the

database contains the right information (for some queries)—and the optimizer ignores it. If

you look at the user_indexes view for this index, you will find the figures shown in Table 6-7.

When walking the index, Oracle examined the data in detail. It has actually recorded the

information that there really are only 25 distinct keys. Moreover, the view also records the fact

that when you execute a query for a single complete key, you will have to traverse approximately

44 leaf blocks to get the rowids for that key and then make approximately 246 table block visits

to pick up the rows—if there is any data at all for that key.

We haven’t looked at the avg_leaf_blocks_per_key or avg_data_blocks_per_key before,

but for single-column indexes, and for multicolumn indexes where the columns aren’t correlated,

you will find that queries using an equality on all the indexed columns have a basic cost that is

close to

blevel + avg_leaf_blocks_per_key + avg_data_blocks_per_key

This is easiest to appreciate on a single-column index, because

• The selectivity is 1 / (number of distinct keys).

• avg_leaf_blocks_per_key is calculated as round(leaf_blks / distinct_keys).

• avg_data_blocks_per_key is calculated as round(clustering_factor / distinct_keys).

The result you get by using this shortcut estimate instead of the proper calculation won’t

necessarily be completely accurate because (as the definitions show) the stored values seem to

be calculated using the round() function, whereas the cost calculations use the ceiling() function;

but it is often close enough to give you a clue about the likely utility of an index in your system.

Table 6-7. Index Statistics from the Test Case in dependent.sql

Statistics Value

Blevel 2

leaf_blocks 1107

distinct_keys 25

clustering_factor 6153

avg_leaf_blocks_per_key 44

avg_data_blocks_per_key 246

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 137

When you get to Chapter 11, you will find that there is a case where the optimizer does use

some of these stored figures, rather than the Wolfgang Breitling formula.

Dynamic Sampling

Let’s try our query against our correlated columns but include the dynamic_sampling() hint in

the SQL and see what happens to the execution plan (script dependent.sql again):

select

 /*+ index(t1) dynamic_sampling(t1 1) */

 small_vc

from

 t1

where

 ind_pad = rpad('x',40)

and n1 = 2

and n2 = 2

;

Execution Plan (9i/10g) without dynamic sampling

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=14 Card=16 Bytes=928)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=14 Card=16 Bytes=928)

2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=4 Card=16)

Execution Plan (9.2.0.6) with dynamic sampling

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=14 Card=442 Bytes=25636)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=14 Card=442 Bytes=25636)

2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=4 Card=16)

Execution Plan (10.1.0.4) with dynamic sampling

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=288 Card=393 Bytes=22794)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (TABLE) (Cost=288 Card=393 Bytes=22794)

2 1 INDEX (RANGE SCAN) OF 'T1_I1' (INDEX) (Cost=46 Card=393)

Clearly, there are some differences in the cardinality estimates between 9i and 10g, but at

least they both get much closer to the 400 that we expect to see. The more significant point in

this example, though, is that 10g has managed to produce a suitable estimate for the cost as well.

This is what’s going on. With the dynamic_sampling(t1 1) hint, we have told the optimizer

to take a random sample of the data set, checking what fraction of the rows sampled meet the

conditions of the query. If you generate a 10053 trace file while this is going on, this is what you

would find in the 9.2.0.6 trace file (after a little reformatting):

138 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

** Generated dynamic sampling query:

SELECT

 /*+ ALL_ROWS IGNORE_WHERE_CLAUSE */

 NVL(SUM(C1),0), NVL(SUM(C2),0)

FROM

 (

 SELECT /*+ IGNORE_WHERE_CLAUSE NOPARALLEL("T1") */

 1 AS C1,

 CASE

 WHEN

 "T1"."N1"=2

 AND "T1"."IND_PAD"='x '

 AND "T1"."N2"=2

 THEN 1

 ELSE 0

 END AS C2

 FROM "T1" SAMPLE BLOCK (8.355795) "T1"

) SAMPLESUB

** Executed dynamic sampling query:

 level : 1

 sample pct. : 8.355795

 actual sample size : 837

 filtered sample card. : 37

 orig. card. : 10000

 block cnt. : 371

 max. sample block cnt. : 32

 sample block cnt. : 31

 min. sel. est. : 0.0016

** Using dynamic sel. est. : 0.04420550

The hint has been used to sample a specific table at level 1, which means 32 blocks. Oracle

knows from the table statistics that the table size is 371 blocks, which means the sample size

ought to be (100 * 32 / 371)%: unfortunately, this comes to 8.625337%, and we can see that

Oracle has used 8.355795%—which represents 31 blocks, not the 32 blocks indicated in the

manuals (you’ll notice that this 31 appears in the subsequent summary as sample block cnt).

You can see that the SQL in the in-line view selects two values for the outer select to count.

The first is the value 1—so sum(c1) simply counts the rows in the sample. The second is a case

statement that evaluates to 1 when a row matches our original predicate, and 0 when it doesn’t—

so that sum(c2) counts the rows that match our predicate.

In the summary page, we see that Oracle examined 837 rows and found 37 matches, a frac-

tion of 0.04420550. Oracle has used this figure for the selectivity of our predicate (possibly after

comparing it to the original theoretical selectivity shown here as the min sel. est.).

Unfortunately, although Oracle has used this selectivity to calculate the cardinality (10,000

* 0.04420550 = 442), it hasn’t used it to calculate the costs.

The behavior of 10g is very similar, although the summary of results is a little more exten-

sive. The output is included in the script dependent.sql, but the critical figure is the dynamic

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 139

sel. est. of 0.03928171. This leads to a cardinality of 393 (multiply by 10,000 and round), and

can then be used to calculate the cost in the standard fashion:

cost =

 blevel +

 ceiling(leaf_blocks * effective index selectivity) +

 ceiling(clustering_factor * effective table selectivity) =

 2 +

 ceiling(1,107 * 0.03928171) +

 ceiling(6,153 * 0.03928171) =

 2 + 44 + 242 = 288

The only other thing of note is that 10.1.0.4 behaves differently from 10.1.0.2, which

managed to produce the following with a level 2 sample:

** Dynamic sampling initial checks returning TRUE (level = 2).

** Dynamic sampling index access candidate : T1_I1

SELECT

 /* OPT_DYN_SAMP */

 /*+ ALL_ROWS NO_PARALLEL(SAMPLESUB) NO_PARALLEL_INDEX(SAMPLESUB) */

 NVL(SUM(C1),0), NVL(SUM(C2),0), NVL(SUM(C3),0)

FROM

 (

 SELECT /*+ NO_PARALLEL("T1") INDEX("T1" T1_I1) NO_PARALLEL_INDEX("T1") */

 1 AS C1, 1 AS C2, 1 AS C3

 FROM "T1" "T1"

 WHERE "T1"."N1"=2

 AND "T1"."IND_PAD"='x '

 AND "T1"."N2"=2

 AND ROWNUM <= 2500

) SAMPLESUB

This is an interesting approach, as it simply counts to check whether the index statistics

are sound, and makes no effort to check the table. Possibly it has been superseded, possibly it

has been enhanced but is no longer relevant to my test case. I suspect that there is still plenty

of scope for further development of dynamic sampling (and surprises for people investigating

it).

Optimizer Profiles

If you’ve used 10g at all, you’ve probably done some experiments with the SQL Tuning Advisor,

and found that sometimes the advice is to accept a profile. The SQL Tuning Advisor can be

instructed to take lots of time analyzing a statement, and work out how it can be made to run

faster (a process I sometimes refer to as offline optimization). One possible step in the analytical

process is a detailed statistical study of the actual data content, querying the base table, and

testing partial joins with data sampling.

140 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

You shouldn’t do this of course, but if you are advised to accept a profile and take a note of

the tuning task ID that generated it, you can find out what goes into that profile by querying

some of the wri$ tables. In particular, the following query may turn up some interesting results:

select attr1

from wri$_adv_rationale

where task_id = &&m_task

;

ATTR1

OPT_ESTIMATE(@"SEL$1", JOIN, ("T2"@"SEL$1", "T1"@"SEL$1"), SCALE_ROWS=15)

OPT_ESTIMATE(@"SEL$1", TABLE, "T2"@"SEL$1", SCALE_ROWS=200)

OPTIMIZER_FEATURES_ENABLE(default)

3 rows selected.

Profiles are just a set of stored hints that supply extra information to Oracle at optimization

time. And, although you obviously should not do this, you can put hints like these into end-

user SQL. In the following example, I have removed the double-quotes, and the query block

references. (The example is not in the online suite.)

select

 /*+

 OPT_ESTIMATE(TABLE, T2, SCALE_ROWS=200)

 OPT_ESTIMATE(JOIN, (T2, T1), SCALE_ROWS=15)

 */

 count(t1.v1) ct_v1, count(t2.v1) ct_v2

from

 t1, t2

where

 t2.n2 = 15

and t2.n1 = 15

and t1.n2 = t2.n2 + 0

and t1.n1 = t2.n1

;

The effect of these hints is to tell Oracle that the single table access path into T2 will return

200 times the number of rows indicated by the stored statistics, and that the join from T2 to T1

will return 15 times the number of rows expected. (Note, however, that these are undocu-

mented, internal hints, and I think the way they are used is still subject to change, so I wouldn’t

use them in production code if I were you, though if you wanted to you could experiment with

them from time to time.)

If you have problems with dependent columns, profiles are likely to help you by helping

Oracle to acquire some intelligent information about the awkward data distributions and their

likely impact.

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 141

■Caution My experiments with the opt_estimate hint showed the effects changing across different

versions of 10.1. Do not try using it as a hint on a production system until it is documented for public use.

Transitive Closure
One of the problems you can have with the optimizer is that the code is sometimes too clever.

When an execution plan seems unreasonable and you are busy trying to work out where the

selectivity went wrong, remember that there may be some predicates floating around that you

didn’t write and can’t see (unless you make proper use of the latest version of explain plan).

The optimizer may have used a mechanism known as transitive closure to generate a few

predicates that will only show up if you use a proper tool to display the full execution plan.

Transitive closure works by logical inference. Assume you have two predicates (see script

trans_close_01.sql in the online code suite):

 n1 = 100

and n2 = n1

then the optimizer will be able to create the predicate

 n2 = 100

and include that in its calculations. But there is a catch—as it introduces the predicate with the

constant, the optimizer may be allowed to eliminate the predicate without the constant, so that

the final where clause looks like the following:

 n1 = 100

and n2 = 100

This can be useful in some cases, but it can have some strange side effects. Consider this

example (script trans_close_02.sql in the online code suite):

create table t1

as

select

 mod(rownum,10) n1,

 mod(rownum,10) n2,

 to_char(rownum) small_vc,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 1000

;

142 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

create table t2 as select * from t1;

-- Collect statistics using dbms_stats here

select

 count(*)

from

 t1, t2

where

 t1.n1 = 5

and t2.n1 = t1.n1

;

The definitions of t1 and t2 are identical. They both have 1,000 rows, and the column n1 is

defined to hold 100 copies each of the values 1 to 10. When we run the query, we should join

100 rows in t1 to 100 rows in t2 for an output count of 10,000 rows. This is the execution plan

we get from 9.2.0.6 using dbms_xplan.display():

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 1 | 6 | 404 |

| 1 | SORT AGGREGATE | | 1 | 6 | |

| 2 | MERGE JOIN CARTESIAN| | 10000 | 60000 | 404 |

|* 3 | TABLE ACCESS FULL | T1 | 100 | 300 | 4 |

| 4 | BUFFER SORT | | 100 | 300 | 400 |

|* 5 | TABLE ACCESS FULL | T2 | 100 | 300 | 4 |

Predicate Information (identified by operation id):

 3 - filter("T1"."N1"=5)

 5 - filter("T2"."N1"=5)

The cardinality is correct, but look at the cost. Notice the merge join Cartesian that appears

in line 2, and the way that the buffer sort in line 4 has acquired a cost of 400 (which looks

remarkably like the cost of the t2 tablescan 100 times—once for each row in t1). Checking the

predicate information, you find no predicate joining the two tables—the join predicate disappears

as the second constant predicate is created.

But if you can interfere with the closure algorithm in a suitable way, the plan changes to

the following (note how the cost seems reasonable, but the cardinality [with heading “Rows”]

is now much too low):

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 143

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | 1 | 6 | 9 |

| 1 | SORT AGGREGATE | | 1 | 6 | |

|* 2 | HASH JOIN | | 1000 | 6000 | 9 |

|* 3 | TABLE ACCESS FULL | T1 | 100 | 300 | 4 |

|* 4 | TABLE ACCESS FULL | T2 | 100 | 300 | 4 |

--

Predicate Information (identified by operation id):

 2 - access("T2"."N1"="T1"."N1")

 3 - filter("T1"."N1"=5)

 4 - filter("T2"."N1"=5)

There are two ways to achieve this effect:

• Add the predicate t2.n1 = 5 explicitly.

• Add a duplicate of the predicate t2.n1 = t1.n1.

A third (undesirable) option is the good old rule-based trick—changing the join predicate

to t2.n1 = t1.n1 + 0. Unfortunately, when you adopt this worst-practice approach, the optimizer

gets the right join cardinality (10,000) and a sensible cost (9).

So be a little careful if you find joins that are producing strange plans and cardinalities; you

may have to doctor them (and document the hacks in anticipation of the next upgrade) to con

the optimizer into treating them sensibly.

Of course, it is easiest to consider transitive closure with equality signs all around, but the

optimizer can be cleverer than that. In the more general case, the optimizer is able to infer the

following: if n1 operator constant and n2 = n1, then n2 operator constant. For example: if

n1 < 10 and n2 = n1, then n2 < 10.

Similarly, if col1 > col2 and col2 > {constant K}, then Oracle can infer the predicate

col1 > {constant K}.

You can even have cases like this one: if n1 > 10 and n1 < 0, then 0 > 10, which is always

false, and therefore can short-circuit an entire branch of an execution plan. The predicates

involved can even be ones that have been generated from constraint definitions. (See script

trans_close_03.sql in the online code suite for some examples.)

The investigation of transitive closure involving the more generalized predicates (such as

n1 < 10) for the nonjoin highlights a nasty little anomaly. The mechanism is not self-consistent.

Consider Table 6-8.

144 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

Of course, it is necessary to preserve the join condition when the nonjoin condition is not

a test for equality, or you could get the wrong results. It is also correct (in the general case) to

eliminate the join condition on equality—at least as far as calculating the cardinality is

concerned, even though this may wreck the options for good execution plans. In 10g release 2,

you will find a new hidden parameter that allows you to specify whether or not the join condi-

tion survives—the default is to allow it to survive, and once again the details of the cardinality

calculation have changed.

Help (or trouble) is at hand, though in the shape of an undocumented effect of an inappro-

priate parameter. You may recall the parameter query_rewrite_enabled from the days when

you needed to set it to true to allow function-based indexes to work. In recent versions of

Oracle, this parameter is no longer relevant to function-based indexes. However, if you do set

query_rewrite_enabled to true, the rules for transitive closure change—until you get to 10g.

Rerun my query from trans_close_02.sql in 8i or 9i with this parameter set to true, and

the join predicate does not disappear. The plan, costs, and cardinality you get match the plan

from the first two hacks I suggested (which means, of course, that the estimated cardinality is

wrong).

Constraint-Generated Predicates
Here’s a little puzzle—I have a table with the column ename that is declared as varchar2(30).

I create (and collect stats on) a simple (no functions involved) B-tree index on that column:

create index t1_i1 on t1(ename);

A user executes the following query:

select * from t1 where upper(ename) = 'SMITH';

Is it possible for the optimizer to use the simple index efficiently (with a precisely targeted

range scan) to acquire the correct data?

The answer is yes—but only from 9i onwards, and only within certain limits (see script

constraint_01.sql in the online code suite).

create table t1 (

 id number,

 v1 varchar2(40) not null,

 constraint t1_ck_v1 check (v1=upper(v1))

);

Table 6-8. Transitive Closure Is Not 100% Consistent

Predicates You Supply Predicates Used by Oracle After Transitive Closure

n1 = 5 and n1 = n2 n1 = 5 and n2 = 5

n1 < 5 and n1 = n2 n1 < 5 and n2 < 5 and n1 = n2

n1 between 4 and 6 and n1 = n2 n1 >= 4 and n1 <= 6 and n2 >= 4 and n2 <= 6 and n1 = n2

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 145

begin

 dbms_random.seed(0);

 for n in 1..10000 loop

 insert into t1 (id, v1) values (n, dbms_random.string('U', 30));

 end loop;

end;

/

create index t1_i1 on t1(v1); -- not an FBI

-- Collect statistics using dbms_stats here

select

 *

from

 t1

where

 upper(v1) = 'SMITH'

;

The secret is in the constraint(s). The optimizer has loaded the constraints into memory,

applied them to the query, and then used transitive closure to come up with new predicates.

Hence

v1 = upper(v1) -- the constraint

upper(v1) = 'SMITH' -- the actual predicate

imply

where v1 = 'SMITH' -- closure, and the index can be used.

As with the ordinary examples of transitive closure from the previous section, you can see

these generated predicates in the full execution plan or from dbms_xplan.

There are a few little quirks and bugs with this feature. In earlier versions of both 9i and

10g, the mechanism could produce wrong results in some special cases, but I think the errors

have been fixed in 9.2.0.6 and 10.1.0.4. There is still an outstanding limitation with 10g (that is

not present in 9i)—the test case in script constraint_01.sql, for example, does not use the

index for the following type of predicate:

where upper(v1) = :bind_var

Of course, it is just possible that the 9i behavior is a bug, and the 10g behavior is the bug fix.

(I can’t think why this would be in this case, but sometimes a feature disappears because it isn’t

logically safe to implement—side-effects due to the risk of null values often fall into this category).

The issue with wrong results revolved around check constraints that included built-in

functions that could return a null value when given a nonnull column value. You will notice

that my column declaration included the not null constraint (strangely, it has to be declared

at the column level, not as a table check constraint). If you fail to do this, there are some classes

of constraint for which the predicate closure mechanism simply will not work, although you

146 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

can force it into play by including an explicit is not null clause in your query. You will also

find that this mechanism will not be invoked if the constraints are declared to be deferrable.

The mechanism is so clever that it can have the slightly surprising effect of putting the

generated predicates somewhere you don’t expect them to be. Consider this example (see

script constraint_02.sql in the online code suite):

create table t1 as

select

 trunc((rownum-1)/15) n1,

 trunc((rownum-1)/15) n2,

 rpad(rownum,215) v1

from

 all_objects

where

 rownum <= 3000

;

create table t2 as

select

 mod(rownum,200) n1,

 mod(rownum,200) n2,

 rpad(rownum,215) v1

from

 all_objects

where

 rownum <= 3000

;

create index t_i1 on t1(n1);

create index t_i2 on t2(n1);

alter table t2 add constraint t2_ck_n1 check (n1 between 0 and 199);

-- Collect statistics using dbms_stats here

select

 count(t1.v1) ct_v1,

 count(t2.v1) ct_v2

from

 t1, t2

where

 t2.n2 = 15

and t1.n2 = t2.n2

and t1.n1 = t2.n1

;

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 147

We might predict that the optimizer could combine the first two predicates in this query to

generate the predicate t1.n2 = 15 (losing the predicate t1.n2 = t2.n2 as it did so). But look

what else we get when we run this query through dbms_xplan.

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | 1 | 444 | 33 |

| 1 | SORT AGGREGATE | | 1 | 444 | |

|* 2 | HASH JOIN | | 15 | 6660 | 33 |

|* 3 | TABLE ACCESS FULL | T1 | 15 | 3330 | 16 |

|* 4 | TABLE ACCESS FULL | T2 | 15 | 3330 | 16 |

--

Predicate Information (identified by operation id):

 2 - access("T1"."N1"="T2"."N1")

 3 - filter("T1"."N2"=15 AND "T1"."N1">=0 AND "T1"."N1"<=199)

 4 - filter("T2"."N2"=15)

We have indeed lost one join predicate and gained another constant predicate, but look

carefully at the filter predicate for line 3: it contains the range-based check that was our constraint

check from table t2—but the check is made against table t1. Because there is an equality

between t1.n1 and t2.n1, the optimizer can see that the only rows that could be joined from t1

must conform to the constraint check on t2, so it has migrated the text of the constraint into a

predicate against t1, as this may allow it to do a more accurate calculation of join cardinality.

(If table t1 already had the same constraint in place, this predicate generation would not occur.)

CONSTRAINTS, PREDICATES, AND DYNAMIC SAMPLING

I first came across this example of a constraint on one table becoming a predicate on another while I was

preparing a presentation on dynamic sampling. Once the parameter optimizer_dynamic_sampling is set

to 4 or more, then the optimizer will request a sample of any table with two or more single-table predicates

against it before generating the full execution plan.

When I was first testing the effects of dynamic sampling, I wrote a query with two tables, each having

just one single-table predicate—and Oracle surprised me by sampling one of the tables. Transitive closure

had added two extra predicates to one of the tables. Oracle is often like that—when you’re busy looking at one

feature, another feature sneaks in to confuse the issue.

You can expect the mechanism to become increasingly sophisticated as time passes. The

two examples shown previously demonstrated cases where there was a simple constraint on a

single column—for a slightly more sophisticated example, look at constraint_03.sql in the

online code suite, which is an example of Oracle using a table-level constraint of the form check

(n2 >= n1) to create a constraint that allows a query to change its execution plan from a tablescan

to an indexed access path.

148 C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S

Summary
There are good reasons why the optimizer can do some surprising things when calculating

the cardinality. If you know why things can go wrong, you have some chance of fixing these

problems sensibly.

Critical points are as follows: the optimizer does not do very well with range scans on char-

acter strings. If you get a highly skewed distribution on the first six or seven characters of a

column, then the optimizer is likely to get a poor estimate of selectivity (and cardinality) quite

frequently. There is no quick and easy workaround to this, but a histogram with a lot of buckets

can help.

Storing data in the wrong data type—particularly storing dates in numeric or character

columns, or turning sequence numbers into zero-padded character strings—is likely to cause

problems. The optimizer may get more accurate estimates of selectivity if you can create histo-

grams with a sufficiently large number of buckets. You may also be able to work around some

problems by creating function-based indexes that restate the data in the correct type—if you

can also change the SQL to match.

Applications that use special values instead of nulls in columns are liable to produce poor

execution plans if the columns are used in range-based predicates. Again, a histogram on the

critical column may make an enormous difference.

Applying functions to columns that do not participate in function-based indexes can lead

to some unexpected selectivities. You may even find that restating the same clause in a different

way can lead to a significant change in selectivity because of some of the inconsistencies of the

fixed constants used for the selectivity in these cases.

Transitive closure can create and lose predicates for you, and generally the impact will be

good. Occasionally, the side effects can be catastrophic, sometimes they may simply be surprising.

Although people sometimes insist on avoiding referential integrity constraints on data ware-

houses because of the overheads, remember that constraints may help the optimizer find a

better execution plan. And don’t be surprised when Oracle picks up a constraint, turns it into a

predicate, and then migrates it through transitive closure to a different table.

Test Cases
The files in the download for this chapter are shown in Table 6-9.

Table 6-9. Chapter 6 Test Cases

Script Comments

char_types.sql Simple script to show numeric representation of character strings

nchar_types.sql Repeat of the preceding, using a multibyte character set

date_oddity.sql Demonstration of cardinality problems due to incorrect data types

char_fun.sql Creates a simple function to calculate the numeric value used by the
optimizer to represent a string

char_seq.sql Problems with zero-padded character strings used for sequence
numbers

C H A P T E R 6 ■ S E L E C T I V I T Y I S S U E S 149

defaults.sql Demonstration of the impact of a silly default value instead of a null

discrete_01.sql Demonstration of the effect of discrete values on a between clause

sysdate_01.sql Demonstration of error in sysdate-related cardinality

like_test.sql Character column like 'XXX%'

fun_sel.sql Selectivity for function(colx)

dependent.sql Demonstration of effects of dependent columns used in a predicate

trans_close_01.sql Simple example of transitive closure

trans_close_02.sql Transitive closure having an odd side effect—autotrace output

trans_close_03.sql Transitive closer with “>”—autotrace output

constraint_01.sql Uses constraints to generate useful predicates

constraint_02.sql A surprise from constraint-based predicates

constraint_03.sql Demonstrates that even table-level constraints between columns
can help

discrete_02.sql Demonstration of the effect of discrete values on greater than/less than

discrete_01a.sql Repeats discrete_01.sql, using a histogram to fix the problem

discrete_02a.sql Repeats discrete_02.sql, using a histogram to fix the problem.

char_value.sql Creates a function to return the numeric value equivalent to an
input varchar2()

trans_close_02a.sql As trans_close_02.sql using dbms_xplan

trans_close_03a.sql As trans_close_03.sql using dbms_xplan

setenv.sql Sets the standardized test environment for SQL*Plus

Table 6-9. Chapter 6 Test Cases

Script Comments

151

■ ■ ■

C H A P T E R 7

Histograms

A lot of misinformation exists on the Internet about histograms: what they do, what they look

like, how they work, and when they don’t work. There are also plenty of gaps in the available

information.

In this chapter, I hope to fill in some of those gaps and correct some of the misunderstandings.

Unfortunately, I shall never know how successful I have been in this aim, because I recently

came across bug 2757360 on MetaLink, dated Jan 2003, which included the wonderful line:

“There are any number of bugs on the CBO and histogram behavior ... ”

You could ask many questions about histograms, but the important ones are probably

these: what are histograms; how does Oracle use them; when does Oracle use them; when does

Oracle ignore them; what problems do they solve; what problems do they introduce; and how

do you build a useful histogram if Oracle won’t do it for you? The answers to all these questions

are in this chapter.

Getting Started
Everyone knows that histograms are supposed to be used for data where a column has a few

special values that appear far more frequently than the rest; and everyone knows that you

should only build histograms on indexed columns. These beliefs are so misleading that I’m

going to ignore them for the moment and start my explanation of histograms with an example

that has no extreme values and no indexes. The test script in the online code suite is called

hist_intro.sql, and as usual, my demonstration environment starts with an 8KB block size,

locally managed tablespaces with a 1MB extent, manual segment space management, and

system statistics (CPU costing) disabled.

execute dbms_random.seed(0)

create table t1

as

with kilo_row as (

 select /*+ materialize */

 rownum

 from all_objects

 where rownum <= 1000

)

152 C H A P T E R 7 ■ H I S T O G R A M S

select

 trunc(7000 * dbms_random.normal) normal

from

 kilo_row k1,

 kilo_row k2

where

 rownum <= 1000000

;

You will notice that this statement uses the subquery factoring mechanism introduced in

9i, which means the code won’t run under 8i. The result is a table holding 1,000,000 random

values in a normal distribution. I’ve used the dbms_random package to generate the data, and

the first line of code, the seed() call, is very important for reproducible examples.

This test case should produce a total of 42,117 different values, ranging from –32,003 to

34,660. Since there are 1,000,000 rows, there will be (on average) 24 rows per recorded value. Of

course, if we happen to check a few specific values, we will find that this average could be quite

misleading. For example, three rows have the value –18,000; only one row has the value +18,000;

and for the value 0 we find 109 rows.

Of course, if you are familiar with the famous bell curve of the normal distribution, you

won’t be surprised at the variations in these results. To highlight this variation, we could collect

and graph the results from this query:

select normal, count(*) ct from t1 group by normal;

If we did this, the graph would look something like the approximation shown in Figure 7-1.

Figure 7-1. Graphing the data distribution

C H A P T E R 7 ■ H I S T O G R A M S 153

Rather than plotting 42,000 distinct points, I’ve sorted my data set into order, split it into

ten blocks of 100,000 rows (anyone who is familiar with quartiles and percentiles will recognize

the technique), and then drawn a bar for each of the ten blocks (or deciles, as they’re called).

This can be done with a simple piece of SQL, which I show here in two stages:

select

 normal,

 ntile(10) over (order by normal) tenth

from t1

;

In the first step, I use the over() clause of the analytic function ntile() to sort the data

into order and break the ordered list into ten evenly sized sections—which will be 100,000 rows

each. The ntile() function extends each row by adding a new column that holds the number

of the section that the row belongs to. I have used the alias tenth for this new column. If I wanted a

more accurate picture of my data, I could simply have increased the value in the ntile() function

to something larger than 10.

Having worked out how to use the ntile() function to sort and section my data, the second

step of the analysis wraps the initial query in an in-line view and generates the low and high

values for each section, from which I can derive the width and height of the rectangles in my

graph.

select

 tenth tenth,

 min(normal) low_val,

 max(normal) high_val,

 max(normal) - min(normal) width,

 round(100000 / (max(normal) - min(normal)),2) height

from (

 select

 normal,

 ntile(10) over (order by normal) tenth

 from t1

)

group by tenth

order by tenth

;

The width of each bar is given by the boundaries of the deciles; the height of each bar is

(100,000 / width), which has the effect of averaging the row distribution across the available

range in the decile and ensuring that all the bars have the same area. The results are as follows:

154 C H A P T E R 7 ■ H I S T O G R A M S

 TENTH LOW_VAL HIGH_VAL WIDTH HEIGHT

---------- ---------- ---------- ---------- ----------

 1 -32003 -8966 23037 4.34

 2 -8966 -5883 3083 32.44

 3 -5883 -3659 2224 44.96

 4 -3659 -1761 1898 52.69

 5 -1761 17 1778 56.24

 6 17 1792 1775 56.34

 7 1792 3678 1886 53.02

 8 3678 5897 2219 45.07

 9 5897 8974 3077 32.50

 10 8974 34660 25686 3.89

Pick any value between –32,003 and –8,966 (the 1st tenth) and the height of that bar tells

you that there won’t be many matching rows in the table (the height is about 4). Similarly, there

won’t be many rows for any value between 8,974 and 34,660 (the 10th tenth). Most of our data

is clustered in the middle section of the graph. In fact, 80% of the data (eight bars out of ten) is

packed into just 27% (from –8,966 to +8,974) of the total range of values.

Now, here’s an important question. If this were your production data set and you were

querying this data frequently, would you want Oracle to behave as if the queries were always

aimed at the extreme ranges or at the packed data set in the middle? Or would different users

have different requirements that covered the entire range of possibilities? Bear in mind that

that’s a business-related question, not a technology question.

If your business is only interested in the central range, then you will probably want Oracle

to behave as if there were about 45 rows for any given value. If your business is always inter-

ested in the outside edges, then you want Oracle to behave as if there were about 4 rows for any

given value. And what is Oracle supposed to do if your queries go all over the place?

Remember that it is important to calculate the correct cardinality at each stage of an

execution plan, because the cardinality at any one point in the plan can affect join orders, join

methods, and choice of indexes. But this data set shows that the correct estimate of the cardi-

nality for a simple equality condition may depend more on the business purpose than on the

raw data.

When the graph isn’t a flat line, it is the business requirement that dictates which bit of the

graph is the important bit, hence what the “correct” cardinality should be. Any time you draw

a picture of your data and find that it has peaks, or gaps, or anything other than a flat, contin-

uous profile, you may have problems getting the optimizer to work out a suitable cardinality

for most of your queries. And, as we know, inappropriate estimates of cardinality lead to

unsuitable execution plans.

Before I end this section, I will be giving you an alternative method for getting the figures

you would need to draw my graph. But for the moment, it’s time to get back on track with histo-

grams. Let’s start by creating a histogram of ten bars (or buckets as Oracle tends to call them)

on the column normal:

C H A P T E R 7 ■ H I S T O G R A M S 155

begin

 dbms_stats.gather_table_stats(

 user,

 't1',

 cascade => true,

 estimate_percent => null,

 method_opt => 'for columns normal size 10'

);

end;

/

Then query the view user_tab_histograms for the 11 values stored there. (To draw N bars,

we need N + 1 endpoints.)

select

 rownum tenth,

 prev low_val,

 curr high_val,

 curr - prev width,

 round(100000 / (curr - prev) , 2) height

from

 (

 select

 endpoint_value curr,

 lag(endpoint_value,1) over (

 order by endpoint_number

) prev

 from

 user_tab_histograms

 where

 table_name = 'T1'

 and column_name = 'NORMAL'

)

where

 prev is not null

order by

 curr

;

Again, I’ve used an analytic function, this time the lag() function, that allows us to transfer

values from previous rows into the current row if we can supply a suitable ordering in the over()

clause. In this case, I’ve lagged the data by one row so that I can find the difference (curr - prev)

between adjacent rows in the user_tab_histograms view.

With the values of (curr - prev) available, I can complete my SQL statement—and when

I run it, it produces exactly the same values I got by running my original query against the raw

data set. I told you that I was going to give you another way of getting the figures to draw my

graph—this is it, a nice, quick query against view user_tab_histograms.

156 C H A P T E R 7 ■ H I S T O G R A M S

Isn’t that an amazing coincidence? No, not really, because from 9i onward, you can enable

SQL trace while using the dbms_stats package to generate a histogram, and find that behind

the scenes, the package is running SQL like the following:

select

 min(minbkt),

 maxbkt,

 substrb(dump(min(val),16,0,32),1,120) minval,

 substrb(dump(max(val),16,0,32),1,120) maxval,

 sum(rep) sumrep,

 sum(repsq) sumrepsq,

 max(rep) maxrep,

 count(*) bktndv,

 sum(case when rep=1 then 1 else 0 end) unqrep

from

 (

 select

 val,

 min(bkt) minbkt,

 max(bkt) maxbkt,

 count(val) rep,

 count(val) * count(val) repsq

 from

 (

 select /*+

 cursor_sharing_exact dynamic_sampling(0) no_monitoring

 */

 "NORMAL" val,

 ntile(10) over(order by "NORMAL") bkt

 from

 "TEST_USER"."T1" t

 where

 "NORMAL" is not null

)

 group by val

)

group by

 maxbkt

order by

 maxbkt

;

Look very carefully at the innermost of the inline views. Note the line where the ntile(10)

appears. Apart from a few cosmetic changes, and a few extra figures used for dealing with extreme

conditions and the value of user_tab_columns.density, the SQL that generates the figures

stored in user_tab_histograms is exactly the same as my original graph-drawing SQL. A histogram

is just a picture of your data set.

C H A P T E R 7 ■ H I S T O G R A M S 157

Look back at the graph one more time, and say to yourself, “Oracle Corp. calls this type of

graph a height balanced histogram.” If you’ve ever had trouble understanding Oracle’s concept of

height balanced histograms, you now know why ... they aren’t “height-balanced,” they’re just

the straightforward style of histogram that most people probably first learned about at the age

of 12, and have never had to think about since.

HEIGHT BALANCED HISTOGRAMS

When I searched Google for height balanced and histogram, every reference I found pointed me back to Oracle.

It was only after a tip-off from Wolfgang Breitling that I did a search for equi-depth and histogram and found

that the histograms that Oracle describes as height balanced are commonly called equi-depth (or sometimes

equi-height) in the standard literature.

None of the terms gives me an intuitive understanding of how the graphs represent the data—so I tend

to avoid using the expression height balanced, and just call the things histograms.

Generic Histograms
Oracle uses histograms to improve its selectivity and cardinality calculations for nonuniform

data distributions. But you can actually use two different strategies: one for data sets with only

a few (fewer than 255) distinct values, and one for data sets with lots of distinct values. Oracle calls

the former a frequency histogram (although technically it probably ought to be a cumulative

frequency histogram) and the latter a height balanced histogram (although, as you saw earlier,

the heights involved are not balanced in any way that a non-mathematician would appreciate).

Although the two types of histogram have their own special features, there are many common

areas in their use that I plan to cover in this section. At the simplest level, irrespective of type, a

histogram is simply a collection of pairs of numbers (stored in views like user_tab_histograms,

user_part_histograms, user_subpart_histograms) that can be used to draw pictures of the

data. However, while collecting the histogram data, Oracle also collects some extra informa-

tion that it uses to calculate a modified density for the column. After generating a histogram for

a column, you will usually find that the density value reported in user_tab_columns (et al.) is no

longer equal to 1 / num_distinct.

When working out selectivities and cardinalities, Oracle may be able to make use of the full

detail of the histogram, but sometimes has to fall back on using just the density. It is this fall-

back position that can cause surprises, so the rest of this section is a quick tour of features that

interfere with the best use of histograms.

Histograms and Bind Variables

We have seen in earlier chapters that the optimizer uses the density as the selectivity for pred-

icates of the form column = constant or column = :bind_variable. So with histograms in place,

the selectivity of a simple equality predicate changes, even for a query involving a bind variable. If

you’ve ever heard that histograms become irrelevant when you use (un-peeked) bind variables,

it’s not quite true—the detail cannot be used, but the effect of the density may be very relevant.

Unfortunately, as I noted earlier, if there is a particular area of the graph that you are really

interested in, you may need to override Oracle’s estimated density and create a business-relevant

density.

158 C H A P T E R 7 ■ H I S T O G R A M S

Bind Variable Peeking

Of course, things got messier when 9i introduced bind variable peeking. Whenever a statement is

optimized, Oracle will (in almost all cases) check the actual values of any bind variables and

optimize the statement for those specific values.

PARSING AND OPTIMIZING

When an SQL statement is first executed, it has to be checked for syntax, interpreted, and optimized. There-

after if the same piece of text is fired at the database again, it may be recognized as previously used, in which

case the existing execution plan may be tracked down and reused.

However, even when a statement is still in memory, some of the information about the execution plan

may become invalid, or may get pushed out of memory by the standard memory management LRU routines.

When this happens, the statement will have to be reoptimized. (You can detect this from the loads and

invalidations columns in v$sql, summarized in the reloads and invalidations columns of

v$librarycache. Reloads occur when information is lost from memory; invalidations occur when some of

the dependent information changes.)

The reuse (or sharing) of SQL is generally a good thing—but if the execution plan generated on the first

use of a statement caters to an unlucky set of values, then every subsequent execution of that statement will

follow the same unlucky execution plan until you can force the statement out of memory—perhaps by the

extreme method of flushing the shared pool.

Bind variable peeking has the unfortunate side effect of making it very easy for one user to introduce an

execution plan that is bad news for every other user for an arbitrary amount of time, until that execution plan

happens to get flushed from the shared pool for some reason.

This works quite well for OLTP systems, of course, as OLTP systems tend to use the same

small number of high-precision queries extremely frequently, and it is quite likely that every

execution of a given statement should employ the same plan. It is possible, though, that the

first time a statement is optimized, an unusual set of values was passed in through the bind

variables. If this happens, the optimizer might find a path that is good for that set of values, but

very bad for the more popular use of the statement.

cursor_sharing

Another feature relating to bind variables is the use of the cursor_sharing parameter. The cost

of parsing and optimizing is so high, and reduces scalability so much, that Oracle Corp. created

the cursor_sharing parameter to allow developers a backdoor into sharable cursors.

When the parameter cursor_sharing is set to the value force, the optimizer will replace

(almost) any literal constants in your SQL (and some of your PL/SQL) with system-generated

bind variables, and check to see whether there is a previously generated sharable cursor that

could be used for this modified statement. Because of the switch to bind variables, cursor_sharing

has a big impact on the effectiveness of histograms. (Of course, after converting the literal

constants to bind variables, 9i then peeks at the actual values if it has to optimize the statement.)

C H A P T E R 7 ■ H I S T O G R A M S 159

CURSOR_SHARING AND PL/SQL

In most cases, Oracle will replace literal values with bind variables with names like :SYS_B_0; however, if you

write code that calls anonymous PL/SQL blocks using the old begin proc_name (...)end; syntax, then

Oracle will not perform bind variable substitution. Since PL/SQL blocks don’t need to be optimized (even

though they still need to have cursor areas prepared for them), the overhead caused by this deficiency in the

mechanism may be something you can put up with.

If you can convert your code to the newer call proc_name(...) syntax, then Oracle will do bind vari-

able substitution. Note, however, that some older versions of Oracle have a bug that causes sessions to crash

if you mix literals and real bind variables in a call, and then enable cursor_sharing.

Two workarounds appeared in 9i to deal with the traps introduced by cursor_sharing=force.

The easy workaround is the hint /*+ cursor_sharing_exact */, which can be added to a state-

ment to tell Oracle that the statement should not have its literal constants replaced by bind

variables.

The more subtle and dangerous workaround is to use the option cursor_sharing=similar.

With this value for cursor_sharing, Oracle will first replace literal constants with bind variables,

and then decide to peek at the bind variables so that it can optimize for the incoming values on

every single parse call for the statement if it seems to be a good idea.

The comments about this feature in the 9.2 manuals say that Oracle will reoptimize if the

values of the variables would make a difference to the execution plan. It seems that two things

will trigger this reoptimization: first, if any of the predicates involves a range scan, and second,

even on a simple equality, if there is histogram on a column that appears in a predicate, the

query will be reoptimized. (See script similar.sql in the online code suite for an example

showing this.)

When this happens, the resources needed for optimization increase, as does the conten-

tion, because Oracle rewrites the query with bind variables, decides it should not be sharable,

and inserts it into the library cache as a new child cursor in v$sql (where lots of copies of the

same, substituted text will presumably be accumulating under the same latch).

The moral of this story is that if you really think you have to set cursor_sharing=similar,

make sure you don’t create more histograms than you absolutely need to, or you may introduce

more performance problems than you solve. (In fact, you should always avoid creating histo-

grams that you don’t really need—it’s just that this setting for cursor_sharing really exacerbates

the problem.)

OUTLINES, EXPLAIN PLAN, AND CURSOR_SHARING

There is a little trap waiting for you if you create stored outlines or make use of explain plan while

cursor_sharing is set to force or similar. When you explain plan for {sql statement}, or create

outline for {sql statement}, Oracle does not replace constants with bind variables. Instead it creates an

execution plan based on the actual values supplied.

160 C H A P T E R 7 ■ H I S T O G R A M S

The effect of this is that the execution plan you see is not necessarily the plan that would be used if you

actually run the query. Moreover, in the case of stored outlines, the SQL with the actual values is stored in table

outln.ol$. If you choose to run the original statement, it will be rewritten at run time to include bind vari-

ables. This means the text of the run-time SQL won’t match the text of the SQL stored in outln.ol$, so the

stored outline won’t even be invoked for the SQL that (apparently) generated it. This may be why some notes

on MetaLink once claimed that stored outlines could not work with cursor_sharing enabled.

A similar issue applies to the initial releases of 10g when you create a profile—but I understand that

this issue has been addressed in 10g release 2.

When Oracle Ignores Histograms

It is quite expensive to generate histograms, so you should think very carefully about doing it.

Oracle doesn’t use them very much, and often won’t get any benefit from them. In fact, there

are several cases where Oracle ignores histograms when you might think they would be used.

Histograms and Joins

Oracle only uses histograms fully when there are highly visible input values—in other words, in

cases where you have predicates of the form column operator constant (although the constant

might come from peeking at a bind variable). Think about this carefully, and you realize that

Oracle may not be able to make much use of histogram information to help it optimize joins

(but see Chapter 10). Consider this simple query:

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t1.n2 = 99

and t1.n1 = t2.n1

;

Even if you have histograms on columns t1.n1 and t2.n1, how can Oracle have any idea

about the range and frequency of values of the join columns for rows where t1.n2 is 99?

On the other hand, remember that creating a histogram on a column will affect the recorded

density of that column; so if calculations of join selectivity or cardinality use the density, then

histograms on join columns will have some effect. Unfortunately, as you will see in Chapter 10,

the calculation of join selectivity seems to use the num_distinct in Oracle 8i and Oracle 9i, and

only switches to the density in Oracle 10g—which means you could have some nasty surprises

when you upgrade even when nothing has changed!

C H A P T E R 7 ■ H I S T O G R A M S 161

JOIN HISTOGRAMS

I have seen a couple of papers suggesting that it is a good idea to create histograms on the columns at the

ends of PK/FK relations. Unfortunately, the papers did not include any justification for this suggestion, nor did

they offer an explanation of the issue that this was supposed to address. In fact, PK/FK joins are the one place

where the optimizer seems to be really good at calculating the correct join cardinality unaided—making histo-

grams unnecessary.

It is possible that the authors were considering the special case of joins where the primary key of the

parent table appeared in a predicate with a literal constant (which, as you saw in Chapter 6, would be forwarded to

the foreign key columns on the child table by transitive closure).

In some cases, though, histograms do make a significant difference (as you will see in Chapter 10); but

only under certain conditions that PK/FK joins aren’t likely to meet.

Histograms and Distributed Queries

Oracle keeps on getting better at handling distributed queries—but even in Oracle 10g, the

optimizer doesn’t try to pull histograms from the remote site(s) to improve its execution plan,

and it’s not just a question of ignoring histograms on join columns. Even when you have remote

columns compared to literal constants, Oracle does not attempt to use the histogram. Again, it

falls back to the num_distinct (or density, depending on version). For example, consider these

two queries (which can be found in script dist_hist.sql in the online code suite):

select

 home.skew2,

 away.skew2,

 home.padding,

 away.padding

from

 t1 home,

 t1@d920@loopback away

where

 home.skew = 5

and away.skew = 5

and home.skew2 = away.skew2

;

select

 /*+ driving_site(away) */

 home.skew2,

 away.skew2,

 home.padding,

 away.padding

162 C H A P T E R 7 ■ H I S T O G R A M S

from

 t1 home,

 t1@d920@loopback away

where

 home.skew = 5

and away.skew = 5

and home.skew2 = away.skew2

;

In this example, I have created a loopback database link to help me emulate a distributed

query, and then joined a table to itself. The column skew that appears with the predicate skew = 5

has a very skewed data distribution, and has had a histogram built on it.

When I generate an execution plan for the query:

select count(*) from t1 where skew = 5;

Oracle estimates a cardinality of 22 if I have the histogram, and 41 if I don’t. In fact, whatever I

do with local queries, or remote (i.e., single-site) queries, Oracle always manages to come up

with a cardinality of 22 if I have a histogram in place.

As soon as I write a distributed query, though, Oracle loses track of the histogram for

whichever copy of the table is not at the driving site. In my test case, regardless of which site

was driving the query, the execution plan was as follows:

Execution Plan (9.2.0.6)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=33 Card=28 Bytes=9296)

1 0 HASH JOIN (Cost=33 Card=28 Bytes=9296)

2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=16 Card=22 Bytes=4488)

3 1 REMOTE* (Cost=16 Card=41 Bytes=5248) D920.JLCOMP.CO.UK@LOOPBACK

We are querying t1 in two different disguises, but with the same predicate. Note how the

cardinality for the local query is different from the cardinality for the remote version, which

(depending on driving site) gets reported in the other column of the plan_table as one of the

following:

SELECT "SKEW","SKEW2","PADDING" FROM "T1" "AWAY" WHERE "SKEW"=5

SELECT "SKEW","SKEW2","PADDING" FROM "T1" "A2" WHERE "SKEW"=5

Of course, if you check the v$sql_plan view at the remote site after running the query, you

find that the remote site actually has used the histogram to work out the cardinality of the

incoming query. But it’s too late by then; the overall plan has already been fixed, and the site

that created it may have selected the wrong join order or join method because it didn’t have the

right information about the remote table’s cardinality.

Frequency Histograms
I mentioned earlier on that there are two different types of histogram, referred to by Oracle as

the frequency histogram and the height balanced histogram. We will examine the frequency

histogram first, as it is much simpler to deal with. The script c_skew_freq.sql in the online

C H A P T E R 7 ■ H I S T O G R A M S 163

code suite builds a test case, with a column called skew defined so that the value 1 appears once,

2 appears twice, and so on up to the value 80 that appears 80 times for a total of 3,240 rows.

When we create a frequency histogram on this table and query the view user_tab_histograms,

this is what we see:

begin

 dbms_stats.gather_table_stats(

 user,

 't1',

 cascade => true,

 estimate_percent => null,

 method_opt => 'for all columns size 120'

);

end;

/

select

 endpoint_number, endpoint_value

from

 user_tab_histograms

where

 column_name = 'SKEW'

and table_name = 'T1'

order by

 endpoint_number

;

ENDPOINT_NUMBER ENDPOINT_VALUE

--------------- --------------

 1 1

 3 2

 6 3

 10 4

 15 5

 . . .

 3160 79

 3240 80

This isn’t the typical output from user_tab_histograms, which we will see later in the

section on height balanced histograms. The endpoint_value is repeating a value from the table,

and the endpoint_number reports the number of rows in the table where the skew column is less

than or equal to that value. Reading down the list, we can see the following:

• There is one row with value 1 or less.

• There are three rows with value 2 or less.

• There are six rows with value 3 or less.

• There are ten rows with value 4 or less.

164 C H A P T E R 7 ■ H I S T O G R A M S

And so on. An alternative way to read the figures, which is valid because the presence of a

frequency histogram tells us that only a small number of discrete values exists in that table, is

to look at differences across the endpoint_number column, hence:

• There is one row with the value 1.

• There are three – one = two rows with the value 2.

• There are six – three = three rows with the value 3.

• There are ten – six = four rows with value 4.

And so on—in fact, given the way in which we compare the current count with the previous

count to determine the number of rows for a given value, we can write a simple SQL statement

using an analytic function to turn the frequency histogram in user_tab_histograms back into

the list of values in our table:

select

 endpoint_value row_value,

 curr_num - nvl(prev_num,0) row_count

from (

 select

 endpoint_value,

 endpoint_number curr_num,

 lag(endpoint_number,1) over (

 order by endpoint_number

) prev_num

 from

 user_tab_histograms

 where

 column_name = 'SKEW'

 and table_name = 'T1'

)

order by

 endpoint_value

;

You may have noticed one oddity with the call to dbms_stats that I used to create the

frequency histogram. Although only 80 distinct values appear in the column, and 80 rows in

the resulting histogram, I asked Oracle to generate a histogram with 120 buckets.

There is a problem with dbms_stats and frequency histograms. From 9i onwards, Oracle

started to create histograms by using the SQL I listed at the end of the “Getting Started” section.

Unfortunately, this SQL will almost invariably fail to produce a frequency histogram if you ask

for exactly the right number of buckets.

To get Oracle to spot the frequency histogram I needed for my 80 values, I found that I had

to request 107 buckets. This is a backward step when compared to the old analyze command,

which would build a frequency histogram if you specified the correct number of buckets. In

particular, this means that if you have more than about 180 distinct values in a column, you

C H A P T E R 7 ■ H I S T O G R A M S 165

may find that you cannot build a frequency histogram on it unless you use the analyze command—

or use a mechanism that I will demonstrate at the end of this section. (I understand that this

problem has been fixed in 10g release 2.)

Once we have the histogram in place, we need to check what happens in various circum-

stances—basically by checking the calculated cardinality against our visual estimate for

different types of query (script c_skew_freq_01.sql in the online code suite, results are from

9.2.0.6, but 8i differed by one on a few items), as shown in Table 7-1.

As you can see, any query using literal values gets the right answer—assuming you are

prepared to accept 1 as an appropriate answer from the optimizer when our understanding lets

us know that there really is no data.

ZERO CARDINALITY

As a general rule, the optimizer doesn’t allow 0 to propagate through a cardinality calculation. Whenever the

computed cardinality is 0, the optimizer plays safe, and introduces a cardinality of 1.

There is at least one special exception to this rule. In the case where a predicate is a logical contradiction

such as 1 = 0, the obvious zero cardinality is accepted. Often, these predicates are internally generated predicates

that allow the optimizer to prune entire branches of execution plans at run time.

Table 7-1. CBO Arithmetic Matching Human Understanding

Predicate Description CBO Human

skew = 40 Column = constant 40 40

skew = 40.5 Column = nonexistent, but in-range 1 0

skew between 21 and 24 Between range with mapped values 90 90

skew between 20.5 and 24.5 Between range with mapped values 90 90

skew between 1 and 2 Between range at extremes 3 3

skew between 79 and 80 Between range at extremes 159 159

skew > 4 and skew < 8 Greater than/less than range 18 18

skew = -10 Below high value 1 0

skew = 100 Above high value 1 0

skew between –5 and –3 Range below low value 1 0

skew between 92 and 94 Range above high value 1 0

skew between 79 and 82 Range crossing boundary 159 159

skew = :b1 Column = :bind 41 ???

skew between :b1 and :b2 Column between :bind1 and :bind2 8 ???

166 C H A P T E R 7 ■ H I S T O G R A M S

In the two examples with bind variables, we see that the CBO has used the standard

0.25% for the range, and when we check column = :bind, we find that 41 comes from

num_rows / num_distinct.

Finally, looking carefully at the density, we discover (and confirm with a few more test

data sets) that density = 1 / (2 * num_rows)—which is probably why we end up seeing a cardi-

nality of 1 whenever we go outside the low/high range, or ask for a value that is not in the

histogram.

There is one little detail that you might also notice if you look closely at histograms. In 10g,

the number of buckets for a frequency histogram (user_tab_columns.num_buckets) matches

the number of distinct values in the table. For earlier versions of Oracle, it is one short. This is

just a change in the view definition, which failed to allow for frequency histograms in earlier

versions.

Clearly, frequency histograms are a good thing—but there are a couple of special points to

consider when creating them or using them:

• You might as well use 254 (the maximum allowed) as the number of buckets when gath-

ering statistics—Oracle will only record the required number of rows anyway, so there is

no point risking missing the critical bucket count.

• If critical values in your data change, your histogram needs to be rebuilt—otherwise Oracle

will have an out-of-date picture of the data. Note that 40.5 reported a cardinality of 1: if we

changed all the 40s to be 40.5, then Oracle would still report skew = 40 with 40 rows.

• Frequency histograms have no impact on expressions with bind variables (if they are not

peeked). The selectivity on column = :bind is still 1 / num_distinct, the selectivity on

ranges are still 5% and 0.25% for unbounded and bounded ranges.

• The CBO is better at spotting that range predicates fall outside the low/high values when

there are histograms in place.

Faking Frequency Histograms

I have pointed out that dbms_stats needs more buckets than the analyze command to spot the

option for a frequency histogram. So what do you do when there are 254 distinct values in your

table—other than use the analyze command to create the histogram?

Take a close look at the procedures in dbms_stats called prepare_column_values,

get_column_stats, and set_column_stats. The script c_skew_freq_02.sql in the online code

suite gives an example of using these procedures to give a column a frequency histogram that

could not be generated by a normal call to dbms_stats. The key points are the calls:

select

 skew,

 count(*)

bulk collect into

 m_val_array,

 m_statrec.bkvals

from

 t1

C H A P T E R 7 ■ H I S T O G R A M S 167

group by

 skew

order by

 skew

;

m_statrec.epc := m_val_array.count;

Here we collect the values and counts from the column into a pair of varray types, and

record the array size ready for a call to prepare_column_values:

dbms_stats.prepare_column_values(

 srec => m_statrec,

 numvals => m_val_array

);

The code also reads the column statistics into local variables, modifies the variables, and

then writes them back to the data dictionary using get_column_stats and set_column_stats

respectively to read and write the values.

Unfortunately, the call to set_column_stats does not recognize that we are creating a

frequency histogram, and so leaves the density unchanged—thus we have to use a little extra

code to calculate the appropriate value before calling set_column_stats.

One final thought about frequency histograms and the ease with which you can create

them. Although I would advise great caution when manipulating the statistics held in the data

dictionary, the procedures are available, and they can be used. You know more about your data

and the way your data is used than the optimizer can possibly work out. It is perfectly reasonable

to invent some numbers that are a more accurate representation of the truth than the image

the optimizer sees.

For example—assume you have a table with 1,000,000 rows, but the end users are only ever

interested in 100,000 of those rows, which include a particular column that holds only 25

different values. It might be a perfectly sensible strategy to create a frequency histogram that

uses a query against just those 100,000 rows and sets the column statistics to claim that the

other 900,000 rows hold nulls.

As another example—if you have a column holding 400 different values, Oracle will only

be able to create a height balanced histogram. This may well be too crude for your purposes.

You might want to try creating a frequency histogram that describes the 254 most popular

values instead.

Warning to Fakers

Strangely, the optimizer seems to have various code paths that can only be taken if you have

faked some statistics. There are also various code paths that seem to be taken at the end of a

complex decision tree—things like “We use 1/num_rows at this point, but if X < Y and the table

at the other end of the join has more than 100 times the rows in this table, then we use the

density.” So you do need to be very careful with the set_xxx_stats() procedures. You are

trying to help Oracle by describing your data well, so your description has to be self-consistent,

and odd things can happen if you don’t cover all the details properly.

168 C H A P T E R 7 ■ H I S T O G R A M S

Script fake_hist.sql in the online code suite shows some effects of getting it “wrong”—

which you might want to do by choice, of course. The most important thing to remember is

that even though the histogram is supposed to describe your data by listing how many rows

you have for each value, the optimizer will adjust these row counts according to other critical

values that it holds about the table.

The maximum cumulative value in a frequency histogram—which appears in the column

endpoint_number—should match the number of rows in the table minus the number of nulls in

the column. If it doesn’t, then Oracle adjusts the cardinality calculation accordingly.

The density is a critical value for the number of rows returned. If you have a specific

value in the histogram that is supposed to return X rows, but X is less than density *

(user_tables.num_rows - user_tab_columns.num_nulls), the optimizer will use the larger

number.

In my test case, I have 300,000 rows in the table, and one column with ten distinct values.

After generating the cumulative frequency histogram, Oracle had a density of 0.000001667 for

the column, and knew that the value 10 appeared exactly 1,000 times according to the histogram.

So, on the baseline test, the following query showed an execution plan with a cardinality

of 1,000:

select

 *

from

 t1

where

 currency_id = 10

;

I then ran several independent tests, using the hack_stats.sql script from the online code

suite to modify the statistics on the data dictionary, rebuilding the baseline after each test:

• When I changed user_tables.num_rows to 150,000, the optimizer reported card = 500.

• When I changed user_tab_columns.num_nulls to 200,000, the optimizer reported card = 333.

• When I changed user_tab_columns.density to 0.01, the optimizer reported card = 3,000.

The last test was the most surprising—when you create a frequency histogram, the density

is always set to 1/(2 * num_rows). But there seems to be a bit of optimizer code that deals with

the possibility that someone has been messing about with the density, and has set it so high

that one of the known values in the frequency histogram is apparently going to return fewer

rows than an unknown value that is not in the histogram.

Clearly, this could be a very convenient way to identify up to 254 specific values in a

column, and then set a figure for the number of rows that the optimizer should allow for every

other value that might be used when querying this column with a constant. Of course, the usual

problems of bind variables, bind variable peeking, and joins have to be taken into account.

C H A P T E R 7 ■ H I S T O G R A M S 169

“Height Balanced” Histograms
If we take our sample data set from the previous section and create a histogram with 75 buckets

(script c_skew_ht_01.sql in the online code suite), we can notice small, but significant, details

in the results that get stored in the data dictionary:

begin

 dbms_stats.gather_table_stats(

 user,

 't1',

 cascade => true,

 estimate_percent => null,

 method_opt => 'for all columns size 75'

);

end;

/

select

 num_distinct, density, num_buckets

from

 user_tab_columns

where

 table_name = 'T1'

and column_name = 'SKEW'

;

NUM_DISTINCT DENSITY NUM_BUCKETS

------------ ---------- -----------

 80 .013885925 58

select

 endpoint_number, endpoint_value

from

 user_tab_histograms

where

 column_name = 'SKEW'

and table_name = 'T1'

order by

 endpoint_number

;

170 C H A P T E R 7 ■ H I S T O G R A M S

ENDPOINT_NUMBER ENDPOINT_VALUE

--------------- --------------

 ...

 59 71

 60 72

 62 73

 64 74

 65 75

 67 76

 69 77

 71 78

 73 79

 75 80

59 rows selected.

Looking first at the information from user_tab_columns, we see that Oracle has correctly

counted that we have 80 distinct values in the column n1. The density is not 1/80, it’s more like

1/72—but could have been almost anything. We also note that Oracle is claiming that we have

a histogram with 58 buckets, despite the fact that we asked for 75 buckets, and can actually see

in view user_tab_histograms that we got 75 buckets (the highest endpoint number is 75) recorded

in 59 rows.

In fact 8i, 9i, and 10g vary in their results:

• 8i gives a density of 0.006756757, creates 74 buckets, and reports 58 buckets.

• 9i gives a density of 0.013885925, creates 75 buckets, and reports 58 buckets.

• 10g gives a density of 0.013885925, creates 75 buckets, and reports 75 buckets.

The bucket count is largely a cosmetic thing, but the variation in density and actual bucket

count occurs because 8i uses the analyze command internally to generate the histogram, whereas

9i and 10g run the SQL statement shown at the end of the “Getting Started” section of this

chapter. The reports you see in the 10053 trace about histograms (particularly “height balanced”

histograms) vary across versions as well—and the output from 10.1.0.4 is slightly different from

the output from 10.1.0.2. The following three examples all came from running exactly the same

script—as you can see, the clarity of information keeps improving:

Version 10.1.0.4:

COLUMN: SKEW(NUMBER) Col#: 1 Table: T1 Alias: T1

 Size: 3 NDV: 80 Nulls: 0 Density: 1.3886e-002

 Histogram: HtBal #Bkts: 75 UncompBkts: 75 EndPtVals: 59

Version 9.2.0.6:

Column: SKEW Col#: 1 Table: T1 Alias: T1

 NDV: 80 NULLS: 0 DENS: 1.3886e-002

 HEIGHT BALANCED HISTOGRAM: #BKT: 75 #VAL: 59

Version 8.1.7.4 reports no histogram details:

Column: SKEW Col#: 1 Table: T1 Alias: T1

 NDV: 80 NULLS: 0 DENS: 6.7568e-003

C H A P T E R 7 ■ H I S T O G R A M S 171

More important than the cosmetic details, though, is the fundamental problem of bad

luck that this example highlights. Look back at the list of (endpoint_number, endpoint_value).

You will notice that some rows are clearly missing—there is no row with the endpoint_number

set to 74, for example. This is why we get a report (10g version) of 75 uncompressed buckets,

but only 59 endpoint values. Some of the buckets are implied and not stored in the database.

We ought to see a row with the values (74, 80) but Oracle can infer that row. Expanding the

previous output to show all the buckets, stored and inferred, we should see the following:

ENDPOINT_NUMBER ENDPOINT_VALUE

--------------- --------------

 ...

 59 71

 60 72

 61 73

 62 73

 63 74

 64 74

 65 75 ***

 66 76

 67 76

 68 77

 69 77

 70 78

 71 78

 72 79

 73 79

 74 80

 75 80

If you drew the graph for this data, you would find that you had to stack two bars on top of

each other for each of the values 73, 74, 76, 77, 78, 79, and 80—but somewhere in the middle,

there would be a little dip in your graph around 75 (marked with the ***).

Oracle recognizes “popular” values in your data by the fact that the uncompressed list of

endpoints shows values repeating. And according to the statistics captured by Oracle, 75 is not

a popular value, and 74 is a popular value—even though we know that we rigged the data so

that there are more 75s than 74s.

With height balanced histograms, you can just get unlucky—you can check this with a few

more tests on this simple data set. Create a histogram with 81 buckets, and you will find that

every value from 72 (inclusive) upward is seen as a popular value. Increase the number of

buckets to 82, and suddenly 71 becomes popular as well—which is a good thing—but at the

same time 76 ceases to be popular—which is a bad thing.

There is no way you can be confident that any specific number of buckets will capture all

your popular values—although a cavalier approach would be to go straight for 254 buckets,

and then check whether all the popular values you cared about had been captured.

You will notice, of course, that the maximum number of buckets is only 254—so at the

finest granularity any bucket represents about 1/250 (0.4%) of the number of rows that have a

value. If you have more than 250 special values, then you are sure to miss some of them in the

histogram. In fact, its worse than that—a single row could span nearly two buckets (0.8% of the

172 C H A P T E R 7 ■ H I S T O G R A M S

row count) and not be noticed by Oracle as a popular value. Worse still, every “very popular”

value takes up more than its fair share of buckets—a small number of very popular rows could

ensure that Oracle misses dozens of rows that you would like to classify as popular.

There are times when you may have to fall back on creating an artificial frequency histo-

gram, because that’s the best you can do to describe your data set to Oracle.

The Arithmetic

When the optimizer takes advantage of a height balanced histogram to work out cardinality, it

adopts one of three major strategies.

Strategy 1 for calculating selectivity/cardinality: For column = constant, the constant may

be a popular value. A popular value is one that fills at least one bucket, and therefore results in

a gap in user_tab_histograms view. If Oracle spots such a value, it does its arithmetic by buckets.

For example, in the preceding, the value 77 appears at endpoint 69, and the previous value (76)

appears at endpoint 67: consequently Oracle considers 77 to be a popular value that spans

2 buckets out of 75. The selectivity of 77 is therefore 2/75, and the cardinality is 3,240 * 2/75 = 86.4—

and with autotrace we see

Execution Plan (9.2.0.6 - select count(*) from t1 where skew = 77)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=1 Card=86 Bytes=258)

Strategy 2 for calculating selectivity/cardinality: We have already noted that 75 is not a

special value, so what happens when we execute a query to select all rows for that value? Oracle

uses the density (not 1/num_distinct, note). We have the density recorded as 0.013885925, so

we expect a cardinality of 3,240 * 0.013885925 = 44.99, and again the plan shows

Execution Plan (9.2.0.6 - select count(*) from t1 where skew = 75)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=1 Bytes=3)

 1 0 SORT (AGGREGATE)

 2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=1 Card=45 Bytes=135)

Of course, you might ask at this point how Oracle works out a density—it is a subject I

don’t really want to spend much time on, as it needs a fairly lengthy example to help me explain

it—and the added value is negligible. So I’ll give you the short answer now, and save the long

answer for Volume 2.

In purely descriptive terms, the density is as follows:

sum of the square of the frequency of the nonpopular values /

(number of nonnull rows * number of nonpopular nonnull rows)

By virtue of the way the columns have been constructed, this can be calculated from the

big histogram query at the end of the “Getting Started” section as follows:

(sum(sumrepsq) - sum(maxrep(i) * maxrep(i)) /

(sum(sumrep) * (sum(sumrep) - sum(maxrep(i)))

C H A P T E R 7 ■ H I S T O G R A M S 173

The subscripts (i) are there to indicate that only certain rows are to be selected from the

query results to contribute to their maxrep value. These rows are the one meeting the following

condition:

maxbkt > min(minbkt) + 1 or min(val) = max(val)

In the special case where there are no popular values (or at least, none that have been

detected by the query), this formula degenerates to the simpler form

sum(sumrepsq) / (sum(sumrep) * (sum(sumrep))

This could be verbalized as: the sum of the squared frequencies over the square of the summed

frequencies.

If you analyze the formula carefully, you will realize that there is a potential trap that could

give you problems if you happen to be unlucky with your data set. The idea of this density

calculation is to factor out the impact of popular values.

For example, if you have 2,000 rows of which 1,000 hold the same value, then a suitably

adjusted density would be 1/2,000 rather than 1/1,001 because Oracle should be able to notice

queries against the popular value and act accordingly. In principle, then, we want the formula

for the adjusted density to reduce the density that would appear in the absence of a histogram.

In practice, this works well for extreme cases like the one I have just described.

However, if you have popular values in your data and Oracle does not notice them when

building the histogram, the formula will produce an increased density. Yet again, you have to

know your data, and know what you are expecting in order to be sure that the optimizer will be

able to do the right job.

Strategy 3 for calculating selectivity/cardinality: After that brief digression, we can investi-

gate the issue of range scans. There are many possible variants on the theme, of course—so we

will stick with just two indicative cases. Since the data set I have been using is a fairly odd one,

I have created another data set for these tests, to make sure that the results showed very clearly

what Oracle is doing. The script is hist_sel.sql in the online code suite.

The script generates 10,000 rows using a scaled normal distribution centered on the value

3,000 ranging from –5,000 to 11,000. Superimposed on this distribution, I have 500 rows each

of the values 500, 1,000, 1,500, and so on up to 10,000—a list of 20 popular values.

After analyzing this table with 250 buckets (80 rows per bucket), I get a histogram that

shows the spikes from my 20 popular values. The number of distinct values is 5,626 and the

column density is 0.000119361 (a convincing drop from 1 / 5,626 = 0.000177746).

My first test case is a range scan across buckets with no popular values: n1 between 100 and

200. If we check the histogram, we find that the required values fall across three buckets with

endpoints 17, 117, and 251.

ENDPOINT_NUMBER ENDPOINT_VALUE

--------------- --------------

 8 -120

 9 17

 10 117

 11 251

 12 357

So we apply the standard formula—bearing in mind that we have to break our required

range across two separate buckets so that we examine ranges 100–117 and 117–200:

174 C H A P T E R 7 ■ H I S T O G R A M S

Selectivity = (required range) / (high value - low value) + 2 * density =

 (200–117)/(251-117) + (117-100)/(117-17) + 2 * 0.000177746 =

 0.619403 + 0.17 + .000355486 =

 0.789047508

Cardinality = selectivity * number of rows IN A BUCKET =

 0.789047508 * 80 = 63.1238

Sure enough, when we run the query with autotrace, we see the following:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=60 Card=63 Bytes=945)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=60 Card=63 Bytes=945)

The second test case is, of course, a range scan across buckets with a popular value: n1

between 400 and 600. (One of my spikes was at n1 = 500.) We need to check up on a little section

from the histogram that will be relevant:

ENDPOINT_NUMBER ENDPOINT_VALUE

--------------- --------------

 12 357

 13 450

 19 500 ***

 20 520

 21 598

 22 670

Note that 500 is a (very) popular value—with six buckets allocated from the histogram. So

we expect to account for at least six buckets plus the rest of the range. Checking carefully, we

see that the range 400 to 600 will extend from buckets 12 to 22—broken down as follows:

• A selection from 357 to 450

• All buckets from 450 to 598

• A selection from 598 to 670

So we have eight whole buckets (endpoint_numbers 13 to 21) plus

(450 - 400) / (450 - 357) + (600 - 598) / (670 - 598) + 2 * 0.000177746 =

 50 / 93 + 2 / 72 + 0.000355486 =

 0.537634 + 0.0277778 + 0.000355486 =

 0.565768

Remembering to add the 8 for the complete buckets, we get a cardinality of

Cardinality = selectivity * number of rows IN A BUCKET =

 8.565867 * 80 = 685.3

And again, running the query through autotrace, we get

C H A P T E R 7 ■ H I S T O G R A M S 175

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=60 Card=685 Bytes=10275)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=60 Card=685 Bytes=10275)

Note, because 8i uses a call to the old analyze mechanism to generate histograms, the

histogram and the density will not match the figures for 9i and 10g. However, the principles of

the arithmetic are the same once the histogram and density have been generated.

Data Problems Revisited
In Chapter 6, I showed a couple of examples where Oracle had a problem getting a good estimate

of selectivity because it had been deceived by non-Oracle design decisions, and then I claimed

that the creation of a histogram helped in such cases. Let’s take a closer look at what’s going on

in these cases.

Daft Datatypes

We created a table that held five years of date information, but stored it in three different

forms—a genuine Oracle date, an eight-digit number looking like yyyymmdd, and a character

string looking like the number 'yyyymmdd'. The creation code is repeated here and in the script

date_oddity.sql in the online code suite:

create table t1 (

 d1 date,

 n1 number(8),

 v1 varchar2(8)

)

;

insert into t1

select

 d1,

 to_number(to_char(d1,'yyyymmdd')),

 to_char(d1,'yyyymmdd')

from

 (

 select

 to_date('31-Dec-1999') + rownum d1

 from

 all_objects

 where

 rownum <= 1827

)

;

Queries that used an equality predicate can cope with the nondate data types, and if we

sort the data by the pseudo-date columns, the order works out correctly. But range-based

176 C H A P T E R 7 ■ H I S T O G R A M S

predicates produce incorrect cardinalities because the numeric and character versions of the

information have huge gaps in them. Oracle is aware that 1 April 2003 is one day after 31 March

2003, but cannot possibly apply the same logic when comparing 20030401 to 20030331, or

'20030401' to '20030331'. As we saw in Chapter 6, a query with a predicate of

where n1 between 20021230 and 20030105

produced a cardinality of 396 in Oracle 9i, although we know that the query is supposed to

report 7 days, and the equivalent query against the genuine date column produced a cardi-

nality of 8. When we built a histogram of 120 buckets, the query against the numeric column

got a lot closer, with an estimated cardinality of 15 rows. We are now going to see why.

In the “Getting Started” section of this chapter, I showed an SQL statement you could run

against the user_tab_histograms table to show the widths and heights of the bars that the

histogram data represented. The version of date_oddity.sql that goes with this chapter does

the same for the 120-bucket histogram against the numeric data, and a critical section of the

results look like this:

 BUCKET LOW_VAL HIGH_VAL WIDTH HEIGHT

---------- ---------- ---------- ---------- ----------

 68 20021028 20021112 84 .1813

 69 20021112 20021127 15 1.015

 70 20021127 20021212 85 .1791

 71 20021212 20021227 15 1.015

 72 20021227 20030111 8884 .0017

 73 20030111 20030126 15 1.015

 74 20030126 20030210 84 .1813

 75 20030210 20030225 15 1.015

 76 20030225 20030312 87 .175

 77 20030312 20030327 15 1.015

As you can see, the histogram manages to give Oracle a better picture of the data. There is

clearly a very big gap—with some very thinly spread data—between the numbers 20021227

and 20030111. This is the thing that people would expect because they know about the end-of-

year gap, but that is a piece of human-oriented information that is not available to the computer—

without the assistance of the histogram. Taking the large-scale view, which loses the detail

about the months, the histogram gives Oracle a graph of the data (part 3 of Figure 7-2) that

allows it to come close to the right answer.

Similarly, the histogram shows that from the end of each month to the beginning (actually,

with our bucket size, the middle) of each month, the data is a little thin, but there is approxi-

mately one row per day for the rest of the month. Of course, looking at the first line in the

preceding list, we know that 20021112 is meant to be just 14 days after 20021028, but Oracle

thinks there are 84 days (numbers) that need to share the 14 rows from our original table.

The arithmetic for our query falls completely into bucket 72, so the optimizer uses the

standard formula for selectivity, but using the endpoint values from the bucket. We have a

between clause, which means we have to allow for a correction factor at both ends of the range.

C H A P T E R 7 ■ H I S T O G R A M S 177

Figure 7-2. Histograms and wrong data types

■Note When you start creating histograms, it is no longer guaranteed that density = 1 / num_distinct,

(although it is still true in this test case, where we have no popular values and don’t have a frequency

histogram).

In the past, we have used 1 / num_distinct for the correction factor and not worried

about whether we should perhaps use the density. In most cases, it is actually the density that

needs to be used, so our formula becomes the following:

selectivity =

 ('required range' / 'total range of bucket') + 2 * density =

 (20030105 - 20021230) / (20030111 - 20021227) + 2 * 0.000547345 =

 8875 / 8884 + 0.00109469 =

 1.00008

But this is the selectivity that has to be applied to the number of rows in the buckets

involved—not to the entire table—and there are 1,827 / 120 = 15 rows per bucket—round(15 *

1.00008) = 15, as required.

You will notice that every single value in the table appears exactly the same number of

times. There are no values with very large numbers of occurrences. According to the traditional

rules of thumb (small number of popular values, etc.) this data set does not need a histogram.

But as you can see, a histogram makes an enormous difference to the optimizer.

178 C H A P T E R 7 ■ H I S T O G R A M S

Any column with a data distribution that does not have a completely flat, unbroken graph,

may need a histogram if you use that column in a where clause. This graph is flat, but it has

some big gaps in it that the optimizer needs to know about.

Dangerous Defaults

The other problem we examined in Chapter 6 revolved around the idea of using a special (extreme)

value to avoid using a null. We had a genuine date column, but used the data 31 December 4000 to

represent missing data. Again, range-based queries suffered because although the optimizer

was doing the date-based arithmetic correctly, the standard formula was using a high value

that was totally unrealistic.

We had data from 1 January 2000 to 31 December 2004, and a predicate:

where date_closed between to_date('01-Jan-2003','dd-mon-yyyy')

 and to_date('31-Dec-2003','dd-mon-yyyy')

Clearly, we expect Oracle to work out that we want one-fifth of the data. However, Oracle

sees a high value of 31 December 4000, and works out a selectivity of about 3/2000 because it

uses the following formula:

(31st Dec 2003 - 1st Jan 2003) / (31st Dec 4000 - 1st Jan 2000) + 2/1828 = 0.00159

But when we build a histogram of just 11 buckets—chosen simply as two per year plus one

spare, just to show you that sometimes a very small number of buckets will do—the CBO

suddenly got a very good answer for its selectivity, hence cardinality. Using the same technique

to display the data in the histogram in graph-ready form, the entire histogram looks like this:

 BUCKET LOW_VAL HIGH_VAL WIDTH HEIGHT

---------- ----------- ----------- ---------- ----------

 1 01-Jan-2000 15-Jun-2000 166 100.0548

 2 15-Jun-2000 28-Nov-2000 166 100.0548

 3 28-Nov-2000 13-May-2001 166 100.0548

 4 13-May-2001 27-Oct-2001 167 99.4556

 5 27-Oct-2001 11-Apr-2002 166 100.0548

 6 11-Apr-2002 24-Sep-2002 166 100.0548

 7 24-Sep-2002 09-Mar-2003 166 100.0548

 8 09-Mar-2003 23-Aug-2003 167 99.4556

 9 23-Aug-2003 05-Feb-2004 166 100.0548

 10 05-Feb-2004 20-Jul-2004 166 100.0548

 11 20-Jul-2004 31-Dec-4000 729188 .0228

If you check the SQL I have used for this table (script defaults.sql in the online code

suite), you will find that the actual values stored in the histogram are the Julian equivalents of

the dates, and I have used a to_date() function to display them. An approximate graphical

representation of these numbers appears in the third part of Figure 7-3.

C H A P T E R 7 ■ H I S T O G R A M S 179

Figure 7-3. Histograms and pseudo-nulls

The data set was created with 100 rows per day in the legal range, with 1% of the data set to

31 December 4000. Notice how the last bucket manages to catch the oddity, showing an enormous

date range with a very small number (0.0228) of rows per day, while the rest of the histogram

shows roughly 100 rows per day for the first 4.5 years.

Any queries we run for the first four years are going to give pretty accurate cardinality esti-

mates. It is only in the last six months (20 July onward) that the figures are going to go bad—

and we can narrow the room for error by creating a lot more buckets. Alternatively, we might

forget about analyzing such predictable data, and simply write a little program that created an

artificial histogram that gave Oracle even better details.

Again, we can see that a histogram isn’t just for data with some popular values—we have a

graph that is not a simple, flat, continuous line, and the CBO needs to know about it.

In passing, when left to do automatic statistics gathering, 10g did not collect a histogram

on this data set, even though it needs it.

Summary
If there is a column in your database that has an interesting data distribution and is used in a

where clause (even in a join condition), then you may need to create a histogram on that column.

Such columns that hold only a small number of values (less than 255) are good candidates

for frequency histograms, but be careful about the rate of change of data and the need to keep

the histograms up to date.

180 C H A P T E R 7 ■ H I S T O G R A M S

Oracle may have trouble creating a frequency histogram if you use the dbms_stats package

(which you should) even if you have only 180 to 200 distinct values in the column. In this case,

you can always use manual methods to generate the histogram and populate the data dictionary.

If you have a larger number of distinct values in a column, you will have to make a guess

about the number of buckets. In most cases, simply electing to use the maximum will be a safe

option. But you may get unlucky. Be aware of your popular, or strange, values, and make sure

that they are visible in the histogram. Remember also that the histogram exists to help the opti-

mizer—you can always subvert Oracle’s internal method for generating a histogram to present

the critical features of your data to the optimizer.

Remember that there are many more reasons for histograms than just the simple-minded

examples of “a small number of very popular values.”

Test Cases
The files in the download for this chapter are shown in Table 7-2.

Table 7-2. Chapter 7 Test Cases

Script Comments

hist_intro.sql Generates a large set of data with a normal distribution

similar.sql Demonstration of effects of cursor_sharing = similar

dist_hist.sql Demonstrates that distributed queries ignore histograms

c_skew_freq.sql Generates a frequency histogram example

c_skew_freq_01.sql Some examples of the cardinality you get with frequency histogram

c_skew_freq_02.sql Example of generating a frequency histogram

fake_hist.sql Examples of the effects of faked statistics on histograms

hack_stats.sql Script to modify statistics directly on the data dictionary

c_skew_ht_01.sql Some examples of the cardinality you get with “height balanced” histograms

hist_sel.sql Further example of cardinality with “height balanced” histograms

date_oddity.sql Example of how histograms can help with incorrect data types

defaults.sql Example of how histograms can help with extreme default values

setenv.sql Sets the standardized test environment for SQL*Plus

181

■ ■ ■

C H A P T E R 8

Bitmap Indexes

When I started writing this chapter, I thought it would be much shorter than the equivalent

chapter on B-tree indexes (Chapter 4) for two reasons. First, bitmap indexes are actually

“hidden” inside B-tree structures, so most of the groundwork for the calculation is in the other

chapter (so you probably ought to read that chapter before you read this one). Second, bitmap

indexes are much less subtle (I thought) than B-tree indexes, so there are fewer complications

to consider.

However, as I started writing, I realized that my casual assumption was wrong. Strategi-

cally, you use bitmap indexes very differently from B-tree indexes, so although there isn’t a lot

of new information to worry about when you consider just one bitmap index, you’ve missed

the point of bitmaps if you stop at one. And if you start looking at the arithmetic that the opti-

mizer uses when combining bitmaps, or generating them on the fly, some very strange things

begin to appear.

Before you carry on with this chapter, though, there is one point that I have to make very

clear. You can get some strange effects by building controlled experiments, and in some cases,

the effects I’ve produced are so strange that I have decided that they are bugs. Why, for example,

should the cost of using a bitmap index change in an arbitrary direction when you change the

value for db_file_multiblock_read_count?

Because of the apparent anomalies in the bitmap calculations, I have been a little less

fussy about the precision of the arithmetic in this chapter. If I have a theory that predicts a

value of 27.23 and the actual answer is 27.51, is the error in my theory or is it a side effect of a

bug? Consequently, when I get an answer that seems to be reasonably close to a prediction, I

haven’t spent a lot of time trying to track down the cause of the difference in case I am wasting

time trying to find a solution that doesn’t exist.

Getting Started
It’s always a good idea to start with a concrete example, and in this chapter I’d like to start with

just one table that demonstrates most of the key points affecting the cost of using a bitmap

index.

As usual, the target tablespace should be built with 8KB blocks, preferably locally managed

with uniform 1MB extents, and not ASSM if you want to get the same results as I did. Also, if you

haven’t been using the sample init.ora definitions from the online code suite, then you will

need to check that your db_file_multiblock_read_count is set to 8. As with the B-tree costs,

we’ll start with CPU costing disabled. The following is an extract from the script

bitmap_cost_01.sql in the online code suite:

182 C H A P T E R 8 ■ B I T M A P I N D E X E S

create table t1

pctfree 70 pctused 30

as

select

 mod((rownum-1),20) n1, -- 20 values, scattered

 trunc((rownum-1)/500) n2, -- 20 values, clustered

 mod((rownum-1),25) n3, -- 25 values, scattered

 trunc((rownum-1)/400) n4, -- 25 values, clustered

 mod((rownum-1),25) n5, -- 25 values, scattered for btree

 trunc((rownum-1)/400) n6, -- 25 values, clustered for btree

 lpad(rownum,10,'0') small_vc, -- target of select

 rpad('x',220) padding -- waste some space

from

 all_objects

where

 rownum <= 10000

;

create bitmap index t1_i1 on t1(n1)

pctfree 90

;

create bitmap index t1_i2 on t1(n2)

pctfree 90

;

create bitmap index t1_i3 on t1(n3)

pctfree 90

;

create bitmap index t1_i4 on t1(n4)

pctfree 90

;

create /* B-tree */ index t1_i5 on t1(n5)

pctfree 90

;

create /* B-tree */ index t1_i6 on t1(n6)

pctfree 90

;

C H A P T E R 8 ■ B I T M A P I N D E X E S 183

begin

 dbms_stats.gather_table_stats(

 ownname => user,

 tabname => 'T1',

 cascade => true,

 estimate_percent => null,

 method_opt => 'for all columns size 1'

);

end;

.

;

There are six significant columns in this table, each individually indexed. Columns n1 and

n2 each hold 20 different values, but one column is generated using the mod() function on the

rownum so the values are scattered evenly across the table, and the other column is generated

using the trunc() function, so all the rows for a given value are clustered together in groups

of 500. I have created bitmap indexes on these two columns to show how variations in data

clustering affect the statistics.

Columns n3 and n4 are similar but with 25 values each. These columns are here so that we

can see something of how the optimizer works out costs when combining bitmap indexes.

Columns n5 and n6 are identical to columns n3 and n4 but have B-tree indexes on them,

which allows us to see how the sizes of bitmap indexes and B-tree indexes differ.

You will note that in the test case I have created both the table and its indexes with fairly

large settings of pctfree to push the sizes up a bit. Coincidentally, this test case happened to

highlight a little difference that I hadn’t previously noticed in the way 8i and 9i allocate bitmap

entries to leaf blocks—it’s surprising how often you can learn something new about Oracle by

accident once you start building test cases.

The statistics on the indexes will be as shown in Table 8-1, if you have used 9i for the test case.

Table 8-1. Statistical Differences Between Bitmap and B-tree Indexes

Statistic t1_i1

(Bitmap)

t1_i2

(Bitmap)

t1_i3

 (Bitmap)

t1_i4

(Bitmap)

t1_i5

(B-tree)

t1_i6

(B-tree)

blevel 1 1 1 1 1 1

leaf_blocks 60 10 63 9 217 217

distinct_keys 20 20 25 25 25 25

num_rows 120 20 125 25 10,000 10,000

clustering_factor 120 20 125 25 10,000 1,112

avg_leaf_blocks_per_key 3 1 2 1 8 8

avg_data_blocks_per_key 6 1 5 1 400 44

184 C H A P T E R 8 ■ B I T M A P I N D E X E S

Points to notice:

• The number of leaf blocks in the bitmap indexes is dramatically affected by the clustering

of the data (n1 is scattered, the index has 60 leaf blocks; n2 is clustered, the index has

10 leaf blocks; similarly n3 / n4 show 63 / 9 blocks). Generally, bitmap indexes on scattered

data tend to be larger than bitmap indexes on clustered, but otherwise similar, data. The

size of a B-tree index is not affected the same way (n5 is scattered data, and n6 is the same

data clustered—both indexes have 217 blocks).

• This specific example shows how counterintuitive the details of bitmap index sizing can

be. The indexes t1_i1 and t1_i2 have 20 distinct keys, the indexes t1_i3 and t1_i4 have

25 distinct keys. Comparing t1_i1 to t1_i3 (the two indexes on scattered data), the

increase in the number of distinct values has resulted in an increase in the number of

leaf blocks. Comparing t1_i2 to t1_i4 (the two indexes on clustered data), the increase

in the number of distinct values happens to have produced the opposite effect.

• In cases with tables that are not very large, you may find that the values for distinct_keys

and num_rows for a bitmap index are identical—this is a coincidence, not a rule. (If you

build the test case under 8i, you will find that distinct_keys and num_rows happen to

come out to the same value in all cases.)

• In this specific example, the num_rows is larger than the distinct_keys in the scattered

examples (t1_i1 and t1_i3) because (a) the string of bits for each key value had to be

broken up into several pieces to fit in the leaf blocks, and (b) the result came from 9i.

■Note This is the little detail I discovered while writing this chapter—9i handles bitmap leaf block allocation

differently from 8i for large values of pctfree. And for bitmap indexes, you might want to start with a large

value of pctfree, such as 50, or even 67, to reduce the damage caused by the occasional piece of DML.

Wolfgang Breitling—one of my technical reviewers—then discovered when running one of the test scripts

that this change also has fairly fluid boundaries that are dependent on the block size used for the index. At the

time of writing, neither of us has yet investigated the full extent of this change.

• The clustering_factor of a bitmap index is just a copy of the num_rows value for the

index. The clustering_factor has no direct connection with the scattering of data in the

table. Data scattering does affect the size of bitmap index entries and can make it look as

if the clustering_factor and the data scatter are arithmetically connected; but this is a

side effect, not a direct consequence.

• The avg_leaf_blocks_per_key is still roughly appropriate in bitmap indexes. (It is still

calculated as round(leaf_blocks / distinct_keys).)

• The avg_data_blocks_per_key is completely irrelevant in bitmap indexes. (It is still

calculated as round(clustering_factor / distinct_keys), but as you saw earlier, the

clustering_factor in bitmap indexes does not describe the table.)

C H A P T E R 8 ■ B I T M A P I N D E X E S 185

DML AND BITMAP INDEXES DON’T MIX

Generally, it is quite disastrous to do any updates to columns with enabled bitmap indexes, or even to do

inserts and deletes on a table with enabled bitmap indexes. Concurrent DML operations can easily cause

deadlocks, and even small serialized DML operations can cause bitmap indexes to grow explosively.

The situation for small, occasional changes has improved in 10g, but for earlier versions, you may find

that if you can’t disable the bitmap index when you need to apply changes to the data, then creating it with an

initial large percentage of empty space (specifically pctfree 67) may stabilize the index at a reasonable level

of space wastage.

Given that the meaning of some of the statistics (and in particular the clustering_factor)

is different for bitmap indexes, what effect does that have on the estimated cost of using the

index? Try a simple column = constant query on each of the columns n6, n5, n4, and n3 in turn.

The columns all have the same number of distinct values, so the results we get from running

autotrace against the four queries may be very informative. Here are the four execution plans

from a 9.2.0.6 system:

Execution Plan - (n6: B-tree index on clustered column)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=54 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=54 Card=400 Bytes=5600)

 2 1 INDEX (RANGE SCAN) OF 'T1_I6' (NON-UNIQUE) (Cost=9 Card=400)

Execution Plan - (n5: B-tree index on scattered column)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=170 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (FULL) OF 'T1' (Cost=170 Card=400 Bytes=5600)

Execution Plan - (n4: bitmap index on clustered column)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=114 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=114 Card=400 Bytes=5600)

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP INDEX (SINGLE VALUE) OF 'T1_I4'

Execution Plan - (n3: bitmap index on scattered column)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=117 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=117 Card=400 Bytes=5600)

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP INDEX (SINGLE VALUE) OF 'T1_I3'

You probably weren’t surprised to see that the queries against the columns with B-tree

indexes had different execution plans for the clustered data (where the index is considered to

be reasonably effective) and the scattered data (where the index is considered to be a waste

of space).

186 C H A P T E R 8 ■ B I T M A P I N D E X E S

But the costs from the two bitmap indexes are nearly identical, regardless of whether the

target data is extremely scattered, or very densely packed. (It is a nuisance that the optimizer

doesn’t report any cost against bitmap indexes—this is a critical bit of useful information that

is also missing from the explain plan and can only be found in 10053 trace files.)

Of course, looking at the statistics available for the two bitmap indexes, it’s not really

surprising that the costs given for the two paths are about the same—there isn’t really anything

in the statistics that describes the way that the data is distributed through the table. (You may

think the factor of 7 difference in the leaf_block counts should mean something, and there is

an element of truth in this, but it’s not really a good indicator. In this example, that factor is

large because of my artificial 90% free space declaration.)

So, where does the calculated cost come from for bitmap indexes? I can tell you part of the

answer, and approximate another part—but this is where my warning about accuracy and

bugs starts to have effect.

The Index Component

Rerun the queries with event 10053 enabled to show the CBO calculation, and you will find the

following details in the trace files (this example is from a 9i system):

For the query n3 = 2 bitmap on scattered data

Access path: index (equal)

 Index: T1_I3

 TABLE: T1

 RSC_CPU: 0 RSC_IO: 3

 IX_SEL: 4.0000e-002 TB_SEL: 4.0000e-002

******** Bitmap access path accepted ********

Cost: 117 Cost_io: 117 Cost_cpu: 0.000000 Selectivity: 0.040000

Not believed to be index-only.

 BEST_CST: 116.54 PATH: 20 Degree: 1

For the query n4 = 2 bitmap on clustered data

Access path: index (equal)

 Index: T1_I4

 TABLE: T1

 RSC_CPU: 0 RSC_IO: 1

 IX_SEL: 4.0000e-002 TB_SEL: 4.0000e-002

******** Bitmap access path accepted ********

Cost: 114 Cost_io: 114 Cost_cpu: 0.000000 Selectivity: 0.040000

Not believed to be index-only.

 BEST_CST: 114.34 PATH: 20 Degree: 1

Two important points to notice. First, the best_cst in each case is not a whole number—it

is reported to two decimal places, and then rounded to the nearest whole number (116.54 went

up to 117, 114.34 went down to 114).

C H A P T E R 8 ■ B I T M A P I N D E X E S 187

The second point comes from the numbers we can see (which are, of course, specific to

this example). The reported cost of the index in both cases (RSC_IO: 3 and RSC_IO: 1) is derived

in the same way it was for B-tree indexes: ceiling (leaf_blocks * effective index selectivity) plus 0 for

the blevel (remember from Chapter 4, when the blevel is 1, it is excluded from the calculation).

One final detail, which isn’t immediately obvious from these figures, is that the final cost

of the query multiplies the stated index component of the cost by a factor of 1.1. Possibly this

scaleup is to give B-tree indexes a small benefit over bitmap indexes when a table has both

types of index in place; possibly it is there to reduce the risk of the optimizer doing a B-tree to

bitmap conversion unnecessarily.

If you work backwards from the figures previously reported, you get the following:

• Using index t1_i3: The cost of the index is 3, which is scaled up to 3.3. But the best_cst

equals 116.54, so the cost of hitting the actual table blocks has been estimated at 116.54

– 3.3 = 113.24.

• Using index t1_i4: The cost of the index is 1, which is scaled up to 1.1. But the best_cst

equals 114.34, so the cost of hitting the actual table blocks has been estimated at 114.34

– 1.1 = 113.24.

Forget about data clustering and data scattering. For bitmap indexes, the calculated cost

of hitting the actual table for a given amount of data is the same, regardless of how the data is

actually scattered or clustered. For bitmap indexes, the cost based optimizer knows nothing

about the real data scatter.

This startling difference in the costing strategy has occasionally resulted in some confusion

about the benefits of using bitmap indexes. Remember that we are looking at the optimizer’s

estimate of what it thinks will happen, and in particular the optimizer’s estimate of the number

of I/O requests that will have to take place. But sometimes people will see a B-tree index being

ignored by the optimizer and discover that when they change it to a bitmap index, the optimizer

uses it. (That’s exactly what would happen if you changed my index t1_i5—the B-tree on the

scattered data—into a bitmap index.)

As a consequence of flawed experiments, it has become common knowledge that a bitmap

index will be more effective when fetching larger percentages of the data from the table. But this

is not correct. If you did the proper tests between a bitmap index and a B-tree index, the amount of

work done would be the same for both, whatever the cost says. The run-time engine will request

a small number of blocks from the index and then request a load of blocks from the table. The

number of table blocks will be the same, regardless of whether the index is a bitmap or B-tree.

What has really happened with bitmap indexes then? The optimizer has lost some critical

information about the data scatter in the table and has to invent some magic numbers as a

guess for the data scatter. What effect does this have when you decide to change a B-tree index

into a bitmap index?

If you start with a B-tree index that produces a low cost, then the equivalent bitmap index

will probably produce a higher cost—think about the effect of changing B-tree index t1_16

(cost 54) into bitmap index t1_14 (cost 114).

If you start with a B-tree index that produces a high cost, then the equivalent bitmap index

will probably produce a lower cost—think about the effect of changing B-tree index t1_i5 (cost

so high that it wasn’t used) into bitmap t1_i3 (cost 117, low enough to be used).

188 C H A P T E R 8 ■ B I T M A P I N D E X E S

■Caution Apart from their incomplete interpretation of their experiments, anyone who advocates turning

B-tree indexes into bitmap indexes to “tune” queries is probably overlooking the problems of maintenance

costs, locking, and deadlocking inherent in using bitmap indexes on columns where the data is subject to

even a low rate of modification.

The Table Component

Going back to the calculations for the two queries with the following predicates:

where n3 = {constant}

where n4 = {constant}

we have worked out that the optimizer has assigned a cost of 113.24 for visiting the table.

Where does this number come from? At this point, we might also take advantage of the other

two bitmap indexed columns in the table to check the 10053 traces for:

where n1 = {constant}

where n2 = {constant}

If we do so, we would see the table-related cost for these two predicates coming out as 137.99.

Given that each value of n1 or n2 retrieves 500 rows, and each value of n3 or n4 retrieves 400

rows, it will be no great surprise that the 137.99 you get from the queries against n1 and n2 is

fairly close to 113.24 * 500 / 400. (Close, but not really close enough, to the value of 141.55 that

this calculation gives.) The optimizer seems to be operating fairly consistently in its assumption

about data scattering.

According to K. Gopalakrishnan et al. (Oracle Wait Interface: A Practical Guide to Oracle

Performance Diagnostics and Tuning, Osborne McGraw-Hill, 2004), the optimizer assumes

that 80% of the target data is tightly packed, and 20% of the target data is widely scattered. You

could apply this approach in two slightly different ways, but let’s try it on columns n1 / n3 and

n2 / n4 assuming that 80% of our rows are clustered, and that the remaining 20% of the rows

are scattered across the rest of the table blocks. The results are shown in Table 8-2.

Table 8-2. Bitmap Arithmetic—Checking the 80/20 Split

Value Indexes on n1 and n2

(20 Values)

Indexes on n3 and n4

(25 Values)

Rows in table 10,000 10,000

Blocks in table 1,112 1,112

Rows per block 8.993 8.993

Rows selected on equality 500 400

Clustered rows 0.8 * 500 = 400 0.8 * 400 = 320

Blocks needed for clustered rows 400 / 8.993 = 44.48 320 / 8.993 = 35.58

Blocks remaining 1,112 – 44.48 = 1,067 1,112 – 35.55 = 1,076

C H A P T E R 8 ■ B I T M A P I N D E X E S 189

So the assumption that the optimizer used 80% as an approximation for clustering is close,

but not quite close enough to give the values we actually see.

But there’s a further complication. If you change the value of db_file_multiblock_

read_count, the cost of these queries change as well, although not in a totally consistent

fashion. Broadly speaking, as the parameter increases, the cost of using the bitmap index

also increases—but there are odd dips and wobbles in the calculation.

Table 8-3 shows some results (generated by the script bitmap_mbrc.sql in the online code

suite) for the cost of the following query:

select /*+ index(t1) */

 small_vc

from

 t1

where

 n1 = 2

;

As you can see, the cost generally increases as the db_file_multiblock_read_count goes

up, but the pattern is not stable.

Scattered rows (20%) 0.2 * 500 = 100 0.2 * 400 = 80

Blocks needed for scattered rows 100 80

Total count of table blocks needed 100 + 44.48 = 144.48 80 + 35.58 = 115.58

Reported table cost (from 10053) 137.99 113.24

Table 8-3. db_file_multiblock_read_count Changing the Index Cost

db_file_multiblock_read_count Reported Cost

4 131

8 141

16 155

32 170

64 191

80 201

81 199

82 200

83 202

84 200

Table 8-2. Bitmap Arithmetic—Checking the 80/20 Split

Value Indexes on n1 and n2

(20 Values)

Indexes on n3 and n4

(25 Values)

190 C H A P T E R 8 ■ B I T M A P I N D E X E S

However, for the purposes of getting a reasonable approximation, I’m happy to stick with

an assumption that the optimizer is inventing something like an 80/20 split between clustered

rows and scattered rows as its built-in rule for bitmap indexes.

I suspect there is a formula similar to the formula for the adjusted dbf_mbrc (see Chapter 2) for

modifying the cost of the bitmap calculation; but usually you only need a reasonable approxi-

mation to determine why an execution plan is being ignored or accepted, and the basic 80/20

approximation is good enough for me at present.

Bitmap Combinations
If we run with the 80/20 figures and live with the fact that any predictions we make are going to

have small errors, what sort of precision are we likely to see with more complex queries? Let’s

start with a simple bitmap and in script bitmap_cost_02.sql in the online code suite:

select

 small_vc

from

 t1

where

 n1 = 2 -- one in 20

and n3 = 2 -- one in 25

;

We start with the standard rules we learned for B-trees. The index on n1 has 20 distinct

values and 60 leaf blocks, n3 has 25 distinct values and 63 leaf blocks; both indexes have a

blevel of 1, which can therefore be ignored. The cost of scanning the indexes to find the rele-

vant bitmaps will be ceiling(60/20) + ceiling(63/25): a total of 6, which we then scale up to

6.6 because of the bitmap multiplier of 1.1.

If the data were truly random, each of our queries would return one row in 500 (20 * 25),

which means 20 rows out of the available 10,000—so the easy bit of the arithmetic tells us that

we should see a plan with a cardinality of 20.

Using the 80/20 approximation, 4 of those rows will be widely scattered (which in this case

means four separate blocks), and 16 of them will be clustered; but we have 9 rows per block on

average, which means we need an extra two blocks for those 16 rows—for a total of six blocks.

So we predict that the total cost will be round(6.6 + 6) = 13. Running the query with

autotrace enabled we see the following:

Execution Plan (9.2.0.6 version)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=13 Card=20 Bytes=340)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=13 Card=20 Bytes=340)

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP AND

 4 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I3'

 5 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I1'

For confirmation, we can check the 10053 trace to find the following:

C H A P T E R 8 ■ B I T M A P I N D E X E S 191

Access path: index (equal)

 Index: T1_I1

 TABLE: T1

 RSC_CPU: 0 RSC_IO: 3

 IX_SEL: 5.0000e-002 TB_SEL: 5.0000e-002

 Access path: index (equal)

 Index: T1_I3

 TABLE: T1

 RSC_CPU: 0 RSC_IO: 3

 IX_SEL: 4.0000e-002 TB_SEL: 4.0000e-002

******** Bitmap access path accepted ********

Cost: 13 Cost_io: 13 Cost_cpu: 0.000000 Selectivity: 0.002000

Not believed to be index-only.

 BEST_CST: 12.87 PATH: 20 Degree: 1

With a best cost of 12.87, we can see that our estimate of 12.66 wasn’t perfect, but our

figures for the index were correct, and our estimate did come pretty close. (The optimizer

seems to have allowed a cost of 6.27 rather than 6 for the visit to the table—maybe this is where

the funny treatment of the db_file_multiblock_read_count appears.)

A little detail to note when checking the execution plans that use bitmap and: the indexes

seem to be arranged in order of selectivity, so that the most selective (best eliminator) goes

first. This is probably echoed down into the execution engine, as it may allow the execution

engine to reduce the number of bitmap index fragments it has to expand and compare.

In a similar vein, if we execute this:

select

 small_vc

from

 t1

where

 n2 = 2 -- one in 20, clustered data

and n4 = 2 -- one in 25, clustered data

;

we get an execution plan from autotrace as follows:

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=8 Card=20 Bytes=340)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=8 Card=20 Bytes=340)

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP AND

 4 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I4'

 5 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I2'

In this case, the final cost is 8, a little lower because of the size of the indexes. We still expect

to acquire 20 rows from the table, so our estimate for the table-related cost is still 6, but the

indexes are so small that the cost of visiting each index is just one block per index, for a total of 2,

which is then scaled up to 2.2; and indeed we see the following in the last lines of the 10053 trace:

192 C H A P T E R 8 ■ B I T M A P I N D E X E S

******** Bitmap access path accepted ********

Cost: 8 Cost_io: 8 Cost_cpu: 0.000000 Selectivity: 0.002000

Not believed to be index-only.

 BEST_CST: 8.47 PATH: 20 Degree: 1

Note, by the way, that in this fragment of the trace file, 8.47 = 2.2 + 6.27, and in the previous

fragment we have 12.87 = 6.6 + 6.27. The optimizer really is multiplying the index component

by 1.1, and is giving a nonintegral value to visiting table blocks.

Again, though, the 80/20 approximation used here starts to break down if pressed too

hard, with diverging results as data sizes increase and the number of indexes used goes up.

Low Cardinality

If you have several bitmap indexes on a table, then Oracle is capable of using as many of them

as is necessary to make the query run efficiently, but won’t necessarily use all the ones that

appear to be relevant. This leads to an important question: when does Oracle decide that there

is no point in using one more bitmap index? The answer is (approximately, and ignoring the

effect of bugs) when the cost of scanning one more set of leaf blocks is larger than the reduction

in the number of table blocks that will be hit.

For example, assume you have a table that lists six attributes for people: sex (2 values),

color of eyes (3 values), color of hair (7 values), home town (31 values), age band (47 values),

and work classification (79 values). Now consider the test case in script bitmap_cost_03.sql in

the online code suite, which builds a table of 800MB (107,543 blocks) holding details of 36 million

people, with a query for rows where

 sex_code = 1

and eye_code = 1

and hair_code = 1

and town_code = 15

and age_code = 25

and work_code = 40

If you had built individual bitmap indexes on all six columns, what is the probability that

Oracle would use all six of them for this query? Answer—almost certainly zero. In fact, in my

test case, Oracle used the three higher precision indexes, and ignored the three low precision

indexes.

A COMMON MISCONCEPTION

The classic example for explaining bitmap indexes is the column holding a male / female flag. Unfortunately,

it’s an example of a bitmap index that I would not expect to see used for general queries.

Ironically, if you want to query this table to count the number of males and females, there are versions of

Oracle where it might be quicker to build, query, and drop an index than it would be to run an aggregate query

against the table directly. That’s only an observation, by the way, not a strategic directive—building an index

on the fly is generally not a good idea. In the versions of Oracle that did not support query rewrite, the index

might have been useful to answer queries that were simply counting occurrences, but now a summary table

declared as a materialized view would probably be the more sensible option.

C H A P T E R 8 ■ B I T M A P I N D E X E S 193

Why is a column with a very small number of distinct values often a bad choice for a bitmap

index? Let’s review the preceding example (the script to rebuild the entire test may take about

30 minutes to run, and needs about 1.2GB of space). The six indexes should have the statistics

shown in Table 8-4 under 9.2.0.6.

If you work out the average number of rows identified by just the town_code, age_code, and

work_code specified in the preceding example, you will see that the optimizer will decide that

these three columns are sufficient to restrict table visits to 36,000,000 / (31 * 47 * 79) = 313 rows.

So with the worst possible scattering of data (rather than the assumed 80/20 split), the work

needed to acquire these rows would be 313 table block visits.

Even if the next best index (hair_code with seven distinct values) reduced the number of

table visits from a worst-case 313 down to 0, it wouldn’t be worth using the index because it

would require visiting an extra 672 index blocks—far more than the number of table block visits

that would be saved.

As a rough test, I used the dbms_stats package to modify the leaf_block count for the

hair_code index, and I had to bring it down to exactly 1,127 blocks—so that leaf_blocks /

distinct_keys was down to 161—before the optimizer considered it worthwhile using it. (If the

table had been sorted on hair_code to start with, the index would have held 675 leaf blocks

rather than 4,690 leaf blocks, so the test was a reasonable one.)

Given the time it took to build the data, hacking the statistics with the dbms_stats package

(see script hack_stats.sql in the online code source) a couple of dozen times to find the break

point seemed a reasonable idea. Although it conveniently showed how the optimizer is very

cunning in making its choice of bitmap indexes, this example also highlighted more deficiencies in

my approximation of the costing algorithm.

The optimizer chose just the three indexes mentioned and reported the total cost of the

query as 314; but if you check the sum of (blevel + leaf_blocks * effective index selectivity) for

those indexes it comes to 352 (164 + 114 + 74). The final cost is less than the sum of its parts—

and that’s before you multiply by the 1.1 scaling factor and add on the cost of visiting the table!

It took me some time to spot what was going on, but when I used the dbms_stats package

to modify the blevel of one of the used indexes, the change in cost was out of proportion to the

change I had made to the blevel. This led me to decide that the final reported cost ignored the

statistics of two of the indexes, and used the values from the cheapest index three times.

Table 8-4. Index Statistics from a 36,000,000 Row Example

Column blevel leaf_blocks distinct_keys leaf_blocks / distinct_keys

(plus blevel)

sex_code 2 1,340 2 670 (672)

eye_code 2 2,010 3 670 (672)

hair_code 2 4,690 7 670 (672)

town_code 2 5,022 31 162 (164)

age_code 2 5,241 47 112 (114)

work_code 2 5,688 79 72 (74)

194 C H A P T E R 8 ■ B I T M A P I N D E X E S

Approximate cost (target 314) =

 74 * 1.1 * 3 + (cheapest index, times three, scaled)

 0.8 * 313 / 335 + (80% of the rows, packed at 335 rows per block)

 0.2 * 313 = (20% of the rows, scattered into individual blocks)

 244.2 + 62.6 + 0.75 = 307.55 (An error of 2.1%)

The strategy of always using the values from cheapest index looks to me like a bug, but it

could be deliberate. However, it does have some odd side effects. When I used the

dbms_stats.set_index_stats procedure to change the number of leaf_blocks recorded for the

hair_code index from 4,690 down to (exactly) 1,127, the optimizer decided to use it without

needing a hint, and did a four-index bitmap and.

However, when I ran this modified test, the reported cost of using the fourth index to

resolve the query was 336, whereas the reported cost of using the three indexes had previously

been only 314. In other words, the optimizer had voluntarily selected an extra index despite the

fact that this increased the cost of the query—and the optimizer is always supposed to select

the cheapest plan unless hinted otherwise.

When I saw this anomaly, I decided that it was a bit risky to assume that it was a genuine

effect, rather than a strange consequence of a slightly hacked data dictionary—so I rebuilt the

test case, sorting the data on the hair_code column, and tried again (see script

bitmap_cost_03a.sql in the online code suite). This had exactly the same effect as hacking the

statistics. The optimizer selected four indexes for the execution plan, even though it reported

the three index option as cheaper when I dropped the fourth index or disabled it with a

no_index() hint. There is clearly something wrong in the code for costing (or perhaps reporting

the cost of) bitmap indexes.

As a quick check of the theory that very low cardinality indexes are not generally useful, I

reran the original query a few more times, with various hints to disable some of the indexes.

The results, shown in Table 8-5, did not entirely conform to my expectations.

As you can see, as soon as I disable the index on age_code (index i5 with 47 distinct values),

the optimizer decided to use the index on sex_code (index i1 with just two distinct values).

Despite my earlier comments that a male/female index would not generally be used, in this

case it was, possibly because it had been given the cost of index i6, the work_code index, and

not its own cost.

Notice, however, that when we disable the sex_code index, the calculated cost of the query

becomes lower. In fact, the actual resource consumption for running the query was also signif-

icantly lower, taking 2,607 logical I/Os when the bad index was used, and only 2,285 when it

was ignored.

Table 8-5. Cost Variations As We Disable Selected Indexes

Hint Indexes Used Cost

no_index(t1 i4) i6, i5, i3, i2 (work, age, hair, eyes) 428

no_index(t1 i5) i6, i4, i3, i2, i1 (work, town, hair, eyes, sex) 485

no_index(t1 i5 i1) i6, i4, i3, i2 (work, town, hair, eyes) 481

C H A P T E R 8 ■ B I T M A P I N D E X E S 195

Of course, there could be a rationale for making this choice—and this may be embedded

in some part of the calculation that I haven’t worked out yet. Bitmap indexes tend to be very

small compared to the table they index; for example, my biggest index is less than 6,000 blocks

on a table of more than 100,000 blocks. You may have enough memory to cache all your critical

bitmap indexes. In those circumstances, it might make sense for the optimizer to trade a large

number of logical I/Os on bitmap indexes against a small number of physical I/Os against the

table. In my test case, the increase from 2,285 logical I/Os to 2,607 logical I/Os would have

allowed Oracle to decrease the number of table block visits from 16 to 8. That extra 320 logical

I/Os doesn’t seem such a bad deal against a reduction in 8 physical I/Os.

There was one other change in behavior that appeared from the big test case—the reported

cost of the query did not change much as I altered db_file_multiblock_read_count. Perhaps

this is because the effect is very small once the data sets get large. Perhaps the error introduced

by the (possible) bug in the handling of multiple indexes is so significant that the (possible) bug

relating to db_file_multiblock_read_count is hidden. Perhaps it’s because there is some special

code for small data sets. In any case, it was nice to discover that for large data sets (which is

where you tend to use bitmap indexes used, anyway), the calculations seem to be a little more

stable than they are for smaller data sets.

Null Columns

It is always important to tell Oracle as much about your data as possible—not null columns are

particularly important, as they can make a big difference to the possibilities open to the optimizer.

Bitmap indexes are a good case in point. Consider the following query, based on the original

sample data set, and note the not equal of the first condition (this is an extract from the script

bitmap_cost_04.sql in the online code suite):

select

 small_vc

from

 t1

where

 n1 != 2

and n3 = 2

;

Depending on the exact details of the table definition, you would find that there are two

possible execution plans for this query:

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1'

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP MINUS

 4 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I3'

 5 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I1'

and

196 C H A P T E R 8 ■ B I T M A P I N D E X E S

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1'

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP MINUS

 4 3 BITMAP MINUS

 5 4 BITMAP INDEX (SINGLE VALUE) OF 'T1_I3'

 6 4 BITMAP INDEX (SINGLE VALUE) OF 'T1_I1'

 7 3 BITMAP INDEX (SINGLE VALUE) OF 'T1_I1

Note, especially, the occurrence of two bitmap minus operations in the second plan. There

are two of them because bitmap indexes include entries for completely null keys.

BITMAP MINUS

To perform a bitmap minus, Oracle takes the second bitmap and negates it—changing ones to zeros, and

zeros to ones. The bitmap minus operation can then be performed as a bitmap and using this negated bitmap.

If we have declared n1 to be not null, Oracle can resolve the query by finding the bitmap for

the predicate n1 = 2, negating it, and then using the result in a bitmap and with the bitmap

for n3 = 2, giving the first execution plan.

If we have not declared n1 as not null, then the bitmap we get from the first step will

include bits for rows where n1 is null—so Oracle has to acquire the bitmap for n1 is null,

negate it, and perform a further bitmap and with the intermediate result.

This extra step will require some work at run time. So if you know that a column is never

supposed to be null, here is another reason for including that little bit of information in the

table definition.

You will notice that I have not reported the costs in the execution plans—this was a delib-

erate omission designed to avoid confusion. 8i behaves quite reasonably and costs the first plan

(with a single bitmap minus step) as cheaper than the second plan (with two bitmap minus steps).

Unfortunately, 9i and 10g both seemed to think that doing a second bitmap minus step

would make the query significantly cheaper than doing just the one bitmap minus step. This

could be a reasonable assumption, but for the fact that the statistics indicate that there were no

rows with a null for the relevant column, so there would be little chance of reducing the number

of visits to the table. Again, we seem to have some circumstances where the algorithms for

bitmap costing are not entirely correct.

There are other problems with null values and bitmap indexes. Currently there seems to

be a bug with the bitmap or mechanism that loses track of the number of nulls in a column

when two bitmap indexes are OR’ed together. (See script bitmap_or.sql in the online code suite.)

C H A P T E R 8 ■ B I T M A P I N D E X E S 197

create table t1

as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 3000

)

select

 /*+ ordered use_nl(v2) */

 decode(mod(rownum-1,1000), 0, rownum - 1, null) n1,

 decode(mod(rownum-1,1000), 0, rownum - 1, null) n2,

 lpad(rownum-1,10,'0') small_vc

from

 generator v1,

 generator v2

where

 rownum <= 1000000

;

create bitmap index t1_i1 on t1(n1);

create bitmap index t1_i2 on t1(n2);

-- Collect statistics using dbms_stats here

select

 small_vc

from

 t1

where

 n1 = 50000

;

select

 small_vc

from

 t1

where

 n1 = 50000

or n2 = 50000

/*

 (n1 = 50000 and n1 is not null)

or (n2 = 50000 and n2 is not null)

*/

;

198 C H A P T E R 8 ■ B I T M A P I N D E X E S

In this example, there are exactly 1,000 rows where column n1 is not null, and it

has exactly 1,000 distinct values, and Oracle can see this in the statistics collected by the

gather_table_stats() call. Column n2 is defined to be identical to column n1.

In the first query, the optimizer will determine that n1 has a density of 1/1,000, with a total

of 1,000 non-null rows, and decide that the cardinality will be 1. If you changed n1 to n2 in this

query, the calculated cardinality would be the same.

But when you run the query with the predicate

where n1 = 50000 or n2 = 50000

the computed cardinality is 1,999. Oracle seems to have applied the density to the total number of

rows in the table, and not allowed for the nulls. So (using the standard formula for an and of

two predicates) we have 1/1,000 of the million rows accepted for the n1 predicate, plus 1/1,000

of the million rows accepted for the n2 predicate; minus one row in the overlap.

Add one is not null predicate, and the computed cardinality drops to 1,000; add the

second is not null predicate, and the cardinality drops to the (correct) value of 1.

CPU Costing
Any discussion of bitmap index costing would be incomplete without some notes on what

happens when you invoke CPU costing.

Given that CPU costing is a strategic feature, it’s a good idea to be prepared for the day

when you have to make the change. And if you had to guess, you might assume that CPU

costing will have more impact on execution plans using bitmap indexes (and the B-tree to bitmap

conversion) because of the work that must be done to convert between bits and rowids.

We’ll use the same system statistics as we did in the Chapter 4 (see script

bitmap_cost_05.sql in the online code suite):

alter session set "_optimizer_cost_model" = cpu;

begin

 dbms_stats.set_system_stats('MBRC',8);

 dbms_stats.set_system_stats('MREADTIM',20);

 dbms_stats.set_system_stats('SREADTIM',10);

 dbms_stats.set_system_stats('CPUSPEED',350);

end;

/

alter system flush shared_pool;

With these figures in place, we can run a couple of the queries that we used earlier on in the

chapter against our original data set, and see how things change. Here, for example, are the

execution plans against column n4 (clustered data, 25 different values, bitmap index) and n6

(clustered data, 25 different values, B-tree index), with their original cost, and with CPU

costing—all plans are from 9.2.0.6:

C H A P T E R 8 ■ B I T M A P I N D E X E S 199

Execution Plan - bitmap index on clustered column

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=114 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=114 Card=400 Bytes=5600)

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP INDEX (SINGLE VALUE) OF 'T1_I4'

Execution Plan - bitmap index on scattered column with CPU costing

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=128 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=128 Card=400 Bytes=5600)

 2 1 BITMAP CONVERSION (TO ROWIDS)

 3 2 BITMAP INDEX (SINGLE VALUE) OF 'T1_I4'

Execution Plan - B-tree index on clustered column

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=54 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=54 Card=400 Bytes=5600)

 2 1 INDEX (RANGE SCAN) OF 'T1_I6' (NON-UNIQUE) (Cost=9 Card=400)

Execution Plan - B-tree index on clustered column with CPU costing

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=55 Card=400 Bytes=5600)

 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=55 Card=400 Bytes=5600)

 2 1 INDEX (RANGE SCAN) OF 'T1_I6' (NON-UNIQUE) (Cost=10 Card=400)

It looks as if our prediction is correct. The cost of the bitmap query has gone up by 14, the

cost of the B-tree query has gone up by just 1. Of course, we know that the B-tree query cost has

been calculated on the basis of visiting about 45 table blocks, compared to the bitmap query

cost that is based on visiting about 100 table blocks—but what Oracle actually does by the time

it gets to the table is the same irrespective of whether it got there from a B-tree or a bitmap

index. So most of the difference in cost must come from the bitmap somehow ... or so we assume!

And this is where (a) autotrace really shows up its deficiencies, and (b) we get a nasty

surprise. If we do a proper explain plan, we get separate io_cost and cpu_cost columns (we

could also look at the 10053 trace for even finer detail).

• The B-tree cost of 55 comes from io_cost = 54, cpu_cost component = 1 (cpu_cost =

577,401).

• The bitmap cost of 128 comes from io_cost = 127, cpu_cost component = 1 (cpu_cost =

1,063,986).

Two things stand out in these figures: first, the actual CPU cost has roughly doubled, which

corresponds roughly to the factor of 2 in the estimated number of I/Os (from 54 to 114)—the

work involved in acquiring the right to access a buffered block is CPU-intensive. But the CPU

required to handle the bitmap expansion is apparently not considered to be dramatically

different from the CPU required to binary chop through an index block.

200 C H A P T E R 8 ■ B I T M A P I N D E X E S

Second, and more significantly, the code for calculating the I/O cost of bitmap indexes

gives you different figures for I/O when CPU costing is enabled—the original cost for our

example was 114, but it’s just gone up to 127. In general, the cost seems to go up when CPU costing

is enabled, and this could have two significant effects. First, when you enable CPU costing,

some of your queries may suffer a dramatic change of execution plans because different execu-

tion plans suddenly appear to be cheaper. Alternatively, some of your execution plans may

look unchanged at first sight (it’s easy to miss the sudden appearance of an extra bitmap index),

but do more work because Oracle is actually using an extra bitmap index at a point where it had

previously not seemed to be worthwhile. (Of course, given the buggy behavior described

earlier, using an extra index might actually make some queries go faster.)

But the really extraordinary thing about the effects of enabling CPU costing with bitmap

indexes is that the figures are still affected by changes to the db_file_multiblock_read_count.

This really seems like a bug, when compared with the costing of B-tree indexes, where CPU

costing switches to using the mbrc and mreadtim values for any calculations based on multi-

block reads. If it’s a bug, it will be fixed, of course, and when it’s fixed, some execution plans will

change.

Interesting Cases
I have pulled together a few of the slightly more obscure facets of bitmap indexes into this

section simply to make sure you are aware of the options. In all cases, though, the arithmetic is

basically nothing new, so I won’t be spending much time describing the details.

Multicolumn Indexes

All the examples in the chapter have been single column indexes, which is probably a realistic

reflection of most production systems. Since the most significant benefit of using bitmap

indexes comes from the way that you can combine them in an arbitrary fashion, there is rarely

any point in precombining columns inside an index.

However, you may have a couple of columns that are always queried simultaneously. For

example, you may have a couple of columns that are in some way dependent on each other, or

possibly hold critical status values.

Depending on the way in which the different values for the columns are distributed through

the table, you may find that a single bitmap index on a pair of columns is actually smaller than the

sum of the sizes of the two individual bitmap indexes. In such cases, it might be a very good

idea to create a multicolumn bitmap index.

The arithmetic involved with multicolumn indexes is no different from the stuff you have

already seen. You simply apply the Wolfgang Breitling formula (which I showed you in Chapter 4)

to predicates that are available on the index to work out how many of the index leaf blocks you

are going to visit, and then to work out what fraction of the table you will have to visit. (So that’s

just using what you learned about ordinary B-tree indexes.) Then you combine the table selec-

tivities you get from each index to work out the final fraction of the table that you are going to

visit, work out the number of rows, and apply the standard 80/20 split for bitmap indexes.

C H A P T E R 8 ■ B I T M A P I N D E X E S 201

Bitmap Join Indexes

One of the interesting enhancements to bitmap indexes in 9i was the addition of the bitmap

join index—an index that could hold entries for the rows in one table, but had key values that

were taken from another table (or tables). For example (see script bitmap_cost_06.sql in the

online code suite):

create bitmap index fct_dim_name on fact_table(dim.dim_name)

from

 dim_table dim,

 fact_table fct

where

 dim.id = fct.dim_id

;

create bitmap index fct_dim_par on fact_table(dim.par_name)

from

 dim_table dim,

 fact_table fct

where

 dim.id = fct.dim_id

;

These index definitions demonstrate two potential benefits:

• The first example gives us an index on a very large fact table that uses a long dimension

name—which did not, however, have to be stored millions of times in the fact table.

• The second example shows us an index that can access the fact table based on a query

against an attribute of a dimension table that (as the column name suggests) may have

far fewer distinct values than the dimension ID, and therefore may be a much smaller,

more desirable, index. (We assume that this is also an attribute that the users frequently

use to identify and summarize the data.)

Personally, I am not convinced that the bitmap join index adds a lot of value once you have

managed to use simple bitmap indexes well—but I can imagine there would be a few cases

where the technology can be used effectively.

Having got through the details of why and how you create a bitmap join index, though, the

arithmetic involved is unchanged. (Although the optimizer is still allowed to consider the option

for doing a join, rather than using the index.) Consider this query:

select

 count(fct.id)

from

 dim_table dim,

 fact_table fct

where

 dim.par_name = 'Parent_001'

and fct.dim_id = dim.id

;

202 C H A P T E R 8 ■ B I T M A P I N D E X E S

Execution Plan (9.2.0.6 - autotrace)

--

SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2149 Card=1 Bytes=9)

 SORT (AGGREGATE)

 TABLE ACCESS (BY INDEX ROWID) OF 'FACT_TABLE' (Cost=2149 Card=10000 Bytes=90000)

 BITMAP CONVERSION (TO ROWIDS)

 BITMAP INDEX (SINGLE VALUE) OF 'FCT_DIM_PAR'

As you can see, Oracle has decided that this query will return 10,000 rows (card=10000).

Taking the usual 80/20 split, this gives us 2,000 rows assumed to be widely scattered, and 8,000

rows tightly packed. The table in question consists of 1,000,000 rows and 30,303 blocks—so

33 rows per blocks.

The data therefore requires 2,000 + 8,000/33 = 2,242 block visits—which is a little bit over

the top for the cost of 2,149 that has been reported, especially when you add in roughly another

7 for the index block visits. However, it falls inside the range of values you can get by adjusting

the db_file_multiblock_read_count, so I’m not too worried by the difference.

In case you’re wondering, even in 9i the optimizer will calculate the cost of the two-table

join before examining the cost of this single table access path.

Bitmap Transformations

The final note on the arithmetic of bitmap indexes covers the two transformations that can

take place involving bitmaps. The basis of both transformations is something that we’ve been

looking at all through this chapter—the frequently occurring execution plan line bitmap

conversion (to rowids).

A bitmap index is essentially a (cunningly packaged) two-dimensional array of ones and

zeros. Each column in the array corresponds to one of the distinct values for the index key,

each row in the array corresponds to a specific row location in the table. Oracle has a simple

piece of arithmetic it can use to say, “Row X in the array corresponds to the Nth row of the Mth

block of the table; conversely, the Pth row of the Qth block in the table corresponds to row Z in

the array.”

The arithmetic that translates an array entry into table entry is the bitmap conversion

arithmetic and it can go either way, at any point in the execution plan. Normally, we only see it

being used to convert from the array to the table, bitmap conversion (to rowids), at the very

last moment before we acquire data from the table—but there are other options.

One of these options is quite well known, and actually caused a few problems in the upgrade

from 8i to 9i: the B-tree to bitmap conversion, reported in a plan as bitmap conversion (from

rowids). For example:

select

 small_vc

from

 t1

where

 n1 = 33

and n2 = 21

;

C H A P T E R 8 ■ B I T M A P I N D E X E S 203

Execution Plan (9.2.0.6)

--

SELECT STATEMENT Optimizer=ALL_ROWS (Cost=206 Card=400 Bytes=6800)

 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=206 Card=400 Bytes=6800)

 BITMAP CONVERSION (TO ROWIDS)

 BITMAP AND

 BITMAP CONVERSION (FROM ROWIDS)

 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=41)

 BITMAP CONVERSION (FROM ROWIDS)

 INDEX (RANGE SCAN) OF 'T1_I2' (NON-UNIQUE) (Cost=41)

In this example (see script bitmap_cost_07.sql in the online code suite), we have two

B-tree indexes on the table t1. The optimizer has decided that neither of the two B-tree indexes

(t1_i1 on column n1, and t1_i2 on column n2) is very efficient as the single access path to the

table, but it has calculated that the number of rows identified by combining the two predicates

will be small.

So, the optimizer has worked out a path that uses index t1_i1 to acquire the set of rowids

where n1 = 33, and t1_i2 to acquire the set of rowids where n2 = 21. But rowids can always be

converted to bits in the bitmap array. So the optimizer converts each list of rowids to an array

of bits using bitmap conversion (from rowids)—and then has two arrays that can be put

through a bitmap and, exactly as if they had come from a pair of normal bitmap indexes. From

there on, the plan is just like an ordinary bitmap plan—we convert the bits back into rowids

using bitmap conversion (to rowids) and visit the table.

The arithmetic used by the optimizer simply puts together a few things we are already

familiar with—the cost of an index range scan (before visiting the table), the combined selectivity

of two predicates, and the bitmap-related 80/20 distribution rule.

• Both our indexes have 1,947 leaf blocks, a blevel of 2, and 50 distinct values—so the

index component of the Wolfgang Breitling formula is 2 + ceil(1947/50) = 41.

• The selectivity of the two predicates is 1/50, so the combined selectivity is 1/2,500. Since

there happen to be 1,000,000 rows in the sample table, the cardinality of the result is

1,000,000 / 2,500 = 400.

• According to the 80/20 rule, 320 rows will be packed, and the 80 rows will be scattered

widely. The 1,000,000 rows in the test table cover 17,855 blocks—56 rows per block—for

a total of 5.7 blocks of packed data, and 80 blocks of scattered data.

• The total cost should therefore be near (41 * 1.1 * 2) + 80 + 5.7 = 175.9.

Unfortunately, 175.9 isn’t really all that close to the value of 206 that was reported. So it’s

back to the drawing board and a search for inspiration. After a few simple experiments, I started to

play with the index blevel, using dbms_stats.set_index_stats, and found that when I increased

the blevel of one of the indexes by 10, the cost of the query went up by 14. I followed this up by

changing the number of leaf_blocks so that the cost of an index range scan went up by 10—

sure enough, the cost of the query went up by 14.

So there seems to be a different fudge factor involved with B-tree to bitmap conversions.

So based on my figures, the cost of this execution plan should be as follows:

204 C H A P T E R 8 ■ B I T M A P I N D E X E S

 Sum(index range scan * 1.4) +

 blocks for 20% scattered rows +

 blocks for 80% packed rows =

 41 * 1.4 * 2 + 80 + 5.7 = 200.5

This is a lot closer to our target of 206, and well within the limits of that ever-present vari-

ation we get by changing the value of db_file_multiblock_read_count, so I’m happy to leave

the approximation there, and move on to the other bitmap transformation.

The second bitmap transformation is something I’ve only come across very recently (in

fact, in a question on the AskTom web site, at http://asktom.oracle.com). Like many execution

plans in Oracle, it was obvious after I saw it that I should have known that it could happen (a

case of “20-20 hindsight”), it was just that I had never expected that it would happen. If Oracle

can convert between bitmap entries and rowids, there is no technical reason why it shouldn’t

do so at any point in an execution plan, so the following execution plan is perfectly legal (see

script bitmap_cost_08.sql in the online code suite):

select

 d1,

 count(*)

from

 t1

where

 n1 = 2

and d1 between to_date('&m_today', 'DD-MON-YYYY')

 and to_date('&m_future','DD-MON-YYYY')

group by

 d1

;

Execution Plan (9.2.0.6)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=48 Card=4 Bytes=44)

1 0 SORT (GROUP BY) (Cost=48 Card=4 Bytes=44)

2 1 VIEW OF 'index$_join$_001' (Cost=41 Card=801 Bytes=8811)

3 2 HASH JOIN

4 3 BITMAP CONVERSION (TO ROWIDS)

5 4 BITMAP INDEX (RANGE SCAN) OF 'T1_D1'

6 3 BITMAP CONVERSION (TO ROWIDS)

7 6 BITMAP INDEX (SINGLE VALUE) OF 'T1_N1'

Note especially how we start with two bitmap indexes, acquire some leaf block data from

each in turn, and then effectively turn the results into an in-memory B-tree index. Once we

have two B-tree index sections, we can do an index hash join between them. This example, of

course, is exactly the opposite to the previous example, where we started with B-tree indexes,

acquired some leaf block data, and converted to in-memory bitmap indexes.

As ever, we can put together the stuff we have learned so far to work out how this plan

achieves its final cost. And in this case, the bit we are most interested in is the working that gets

us to the result of the hash join (the index$_join$_001 view in line 2).

C H A P T E R 8 ■ B I T M A P I N D E X E S 205

Whenever you have to work with problems like this, there are usually several different

approaches you could take, and the easiest demonstration of what’s going on here is to run the

query with the 10053 trace event enabled. When you examine the trace file, you find that

Oracle is simply working out the usual index access cost to get at the leaf blocks of the two

indexes, with no special scaling factor, and no little extra add-on to allow for the bitmap

conversion (to rowids). After that, the cost of the hash join is simply the normal costing for

hash joins (which you will see in Chapter 12).

An alternative strategy to determine that Oracle is simply using the normal index costing

is to use dbms_stats.set_index_stats to adjust the index statistics. Add 10 to the blevel of one

index, and the total cost of the query goes up by 10; adjust the number of leaf_blocks in an index

by an amount that should add 10 to the index cost, and it adds 10 to the total cost of the query.

Summary
Bitmap indexes lose information about data scattering, so the optimizer has to invent some

numbers. As soon as the optimizer uses hard-coded constants in place of real information, it is

inevitable that some of your queries will do the wrong thing.

I am still not sure of the exact formulae used by Oracle for costing bitmap access—there

may even be bugs in the costing algorithms that make the costing unstable. I think the notes

and approximations of this chapter should be sufficient to give you a reasonable idea of how

the optimizer is going to behave, but there seems to be a surprising fudge factor that depends

on the value of db_file_multiblock_read_count.

When you move from traditional costing to CPU costing, you may see some execution

plans change dramatically, and others stay largely the same but run more slowly because an

extra bitmap index has been used (perhaps unnecessarily) to filter data out.

When you combine bitmap indexes, the optimizer seems to report a cost based on the cost

of just the cheapest relevant index instead of the cost of the indexes actually used. This has

some odd side effects that may mean some queries do too much work because an inappro-

priate set of indexes has been picked.

It is possible that the apparent bugs in the calculations are actually a deliberate design

choice that is supposed to incur high numbers of logical I/Os against bitmap indexes to save on

small numbers of physical I/Os against tables. In effect, the costing model may be assuming

that you have your bitmap indexes in a large KEEP pool and the corresponding tables into a

small RECYCLE pool. (Warning: this comment is highly speculative, so don’t depend on it.)

Keep a close eye on the patch list for any bugs relating to costing of bitmap indexes. Some

fixes might have a serious impact on your databases’ performance.

Test Cases
The files in the download for this chapter are shown in Table 8-6.

206 C H A P T E R 8 ■ B I T M A P I N D E X E S

Table 8-6. Chapter 8 Test Cases

Script Comments

bitmap_cost_01.sql Basic script used in this chapter to build a table with six
indexed columns

bitmap_mbrc.sql Sample to show how db_file_multiblock_read_count affects
bitmap costs

bitmap_cost_02.sql Queries that combine two indexes on the base table from the
script bitmap_cost_01.sql

bitmap_cost _03.sql Script to generate a large table (800MB with 36 million rows) to
demonstrate the general uselessness of bitmap indexes on columns
of very low distinct cardinality

hack_stats.sql Sample script showing how to make small changes to existing
object-level statistics

bitmap_cost_03a.sql Repeats bitmap_cost_03.sql, with the hair_code in sorted order

bitmap_cost_04.sql Effects of nullable columns and bitmap MINUS

bitmap_or.sql Demonstration of bug in bitmap OR

bitmap_cost_05.sql Effects of CPU costing

bitmap_cost_06.sql Example of bitmap join index

bitmap_cost_07.sql Example of B-tree index to in-memory bitmap conversion plan

bitmap_cost_08.sql Example of bitmap index to in-memory B-tree conversion plan

setenv.sql Sets a standardized environment for SQL*Plus

207

■ ■ ■

C H A P T E R 9

Query Transformation

Nine chapters into the book, and I still haven’t got as far as a two-table join. And I’m going to

avoid joins for just one more chapter while I discuss features such as subqueries, view merging,

unnesting, and the star transformation.

The reason for examining some of the more subtle options before looking at joins is that

the optimizer tries to restructure the SQL you write, generally turning it into a simpler form

consisting of just a straight join between tables, before optimizing it. This means the first step

in understanding how the optimizer evaluates an execution plan requires you to work out the

structure of the SQL that is actually being optimized. Since this chapter is about transforma-

tion mechanisms, there won’t be a lot about cost in it.

A key point to remember about some of these transformations and the strange consequences

that you sometimes see is that the code driving the decision to transform your SQL is still partly

rule-based (or, as they say in the manuals, heuristically driven). In one version of the database,

you may see a particular execution plan appear because that’s what the rules say; and then you

upgrade and the optimizer works out the cost of two execution plans, one with the transforma-

tion and one without, and takes the cheaper one—which may not be the one you saw before

the upgrade, and may not be faster.

It seems that a common life cycle of the internal code for a typical query transformation is

as follows:

• Beta-like state: The internal code exists, and you can make it happen with a (possibly)

hidden parameter or undocumented hint.

• First official publication: The internal code is enabled by default, but not costed, so the

transformation always happens.

• Final state: The optimizer works out the cost of the original and the transformed SQL

and takes the cheaper option. The hint is deprecated (as, for example, hash_aj has been

in 10g).

In cases like this, you may have to fall back on the 10053 trace to figure out which state the

feature and its supporting code is currently in.

208 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

Getting Started
We’ll start with an example to demonstrate the way in which sections of optimizer code can

change. As ever, we stick with an 8KB block size in locally managed tablespaces, with 1MB

uniform extent size, avoid ASSM, and disable system statistics to make the test case reproducible

(see script filter_cost_01.sql in the online code suite).

create table emp(

 dept_no not null,

 sal,

 emp_no not null,

 padding,

 constraint e_pk primary key(emp_no)

)

as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 1000

)

select

 mod(rownum,6),

 rownum,

 rownum,

 rpad('x',60)

from

 generator v1,

 generator v2

where

 rownum <= 20000

;

In this script, I have created a table of 20,000 employees, scattered over six departments.

Each employee has a different identifier, and a different salary. The code sample demonstrates

the 9i feature of subquery factoring (with subquery), which I often use to generate a lot of rows

from a row source that might otherwise not be large enough. (The 8i version of the script creates a

scratch table.)

We now run a query to list all the employees who earn more than the average salary for

their department, and check the execution plans that we get from autotrace in different versions of

Oracle. However, to highlight an important point, the SQL uses the no_unnest hint to force the

optimizer to use a particular execution plan, because in this case the change in the internal

code produces a dramatic change in the predicted cost and cardinality of the execution plan.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 209

select

 outer.*

from emp outer

where outer.sal > (

 select /*+ no_unnest */

 avg(inner.sal)

 from emp inner

 where inner.dept_no = outer.dept_no

)

;

Execution Plan (8.1.7.4)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=33 Card=1000 Bytes=72000)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=33 Card=1000 Bytes=72000)

3 1 SORT (AGGREGATE)

4 3 TABLE ACCESS (FULL) OF 'EMP' (Cost=33 Card=3334 Bytes=26672)

Execution Plan (9.2.0.6)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=35035 Card=1000 Bytes=72000)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=1000 Bytes=72000)

3 1 SORT (AGGREGATE)

4 3 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=3333 Bytes=26664)

Execution Plan (10.1.0.4)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=245 Card=167 Bytes=12024)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=35 Card=20000 Bytes=1440000)

3 1 SORT (AGGREGATE)

4 3 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=35 Card=3333 Bytes=26664)

You will notice that the cost of the simple tablescan on the emp table (line 2) changed from

33 in 8i to 35 in 9i and 10g. One unit of the difference appears because the hidden parameter

_tablescan_cost_plus_one is set to true in the newer versions of Oracle, but false in the older

version. The other unit is because the tables are slightly different sizes thanks to a change in the

behavior of initrans.

In 9.2, the initrans storage parameter on a table defaults to 2 (even if you set it to 1, and

even when the data dictionary claims that it is 1). Moreover, when you do a create table as

select, the actual number of slots in the interested transaction list (ITL) of each of the initially

created table blocks is three rather than the two dictated by initrans. In the example, this tiny

difference is just enough to make the emp table just one block bigger, which just happens to

increase the cost of scanning it by one.

210 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

You will notice that the execution plans are the same in all three cases—but the costs and

cardinalities show some dramatic differences. Since the cost and cardinality of one line of an

execution plan can dictate the optimizer’s choice of join orders and join methods for the whole

plan, you will appreciate that the changes in calculations used for this operation could have a

significant difference for more complex queries as you upgrade your version of Oracle.

Look at the cost for the 8i execution plan—it looks as if the optimizer has simply forgotten

to factor in the cost of the subquery at all, so the cost of the query is just the cost of the driving

full tablescan.

The cost that 9i works out does, at least, appear to have some sort of rationale behind it.

One component of the 35,035 is the cost of the driving tablescan (35) in line 2. According to the

execution plan, the number of rows (card =) on the driving tablescan will be 1,000—so the

subquery (which is also a tablescan) will apparently have to be executed 1,000 times: 1,000 * 35

= 35,000. Adding these two components, you get the required total of 35,035.

But what is the source of the 1,000 that the optimizer has estimated as the cardinality of the

driving tablescan? Unfortunately, in another stage of the calculations, the optimizer has worked

out that the cardinality of the final result set will be 1,000. This comes from the fact that the

only predicate on the driving table is salary > not yet known result of subquery, and this

predicate has been given the same 5% selectivity as column > :bind_variable. Note the circular

argument, though: the end result will be 1,000 rows, so the optimizer has assumed that the

subquery used to generate the end result will be executed 1,000 times.

Finally, we get to 10g—and see that the query cost is 245. We also note that in line 2 of the

execution plan the optimizer reports the cardinality of the driving tablescan as 20,000 (the

number of rows in the table) rather than 1,000. So where does the cost come from?

You can get the answer by working backward: 245 / 35 = 7, the cost is equivalent to seven

tablescans of the emp table. Subtract one of these for the driving tablescan, and you can infer

that the optimizer has decided that the total impact of the subquery will amount to six tables-

cans. Why? Because that’s what the optimizer is predicting as the actual work the execution

engine will have to do.

Remember that there were six departments, and we needed to find the average salary for

each department—10g is smart enough to work out that it need only execute the subquery six

times, building an in-memory reference table of results as it goes. (We will examine this behavior

later on in the section “Filter Optimization.”) You can even see a clue to this behavior in line 4

of the execution plan, where the optimizer does a full tablescan for the subquery, and reports a

cardinality of 3,333—one sixth of the table.

The final cardinality of 167 was a bit of a surprise. But when I first saw it, it seemed too

much of a coincidence that if you take 5% of 20,000 (remember that column > :bind_variable

has a selectivity of 5%), and then divide by 6 (the number of departments) the answer is 167. So

I repeated my test code with eight departments—and got a final cardinality of 125, which is

1,000 / 8. The optimizer is dividing out by a related but irrelevant factor when it performs the

filter operation. (This is better than it could be—there is a hidden parameter in 10g called

_optimizer_correct_sq_selectivity, which is set to true; change this to false, and the optimizer

uses the bind-variable 5% value a second time to calculate the cardinality, bringing it down to

50, instead of using the grouping factor from the subquery.)

You will notice, of course, that whichever version of Oracle you are using, the optimizer

has produced a resulting cardinality that is wrong. In many typical data sets, the number of

rows with a value greater than average will be approximately half the rows (although one

British union activist is in the annals of urban legend as stating that he would not rest until

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 211

every worker earned more than the average wage). Since we have 20,000 rows in our emp table,

the optimizer’s estimate of 1,000 rows in 8i and 9i is out by a factor of 10, and the estimate in

10g is out by a factor of 60. That’s a problem with generic code, of course; the optimizer only

sees a subquery, it doesn’t “understand” the particularly special effect of the average function

that happens to be embedded in that subquery.

Evolution

So we find from our experiments with filtering that 8i hasn’t got a clue about costs, 9i uses a

circular argument for costing, and 10g knows what’s going on in terms of cost but does some-

thing about the cardinality that is most inappropriate for the specific example.

We will return to subqueries later in this chapter. The critical point I wanted to make with

this particular example was that the area of query transformation shows a great deal of evolu-

tionary change as you work through different versions of the optimizer.

Filtering
With the evolution of the optimizer, Oracle is increasingly likely to eliminate subqueries by

using various transformations, perhaps making the filter operation we saw earlier nearly

obsolete. Even so, there are cases where subqueries cannot, or perhaps should not, be trans-

formed away, so it is worth discussing their treatment.

THE MEANING OF “FILTER”

The name filter is applied to many different types of operation: for example, table elimination in partitioned

views, evaluation of the having clause in aggregate queries, and the evaluation of correlated subqueries

shown in this chapter.

Until the filter_predicates column appeared in the 9i plan_table, it was sometimes difficult to

decide exactly what a filter line in an execution plan was supposed to mean. Make sure you stay up to date

when it comes to knowing what’s in the plan_table. Sometimes a new version gives you extra information

in new columns.

Consider the following SQL, taken from the script push_subq.sql in the online code suite:

select

 /*+ push_subq */

 par.small_vc1,

 chi.small_vc1

from

 parent par,

 child chi

where

 par.id1 between 100 and 200

and chi.id1 = par.id1

and exists (

212 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

 select

 /*+ no_unnest */

 null

 from subtest sub

 where

 sub.small_vc1 = par.small_vc1

 and sub.id1 = par.id1

 and sub.small_vc2 >= '2'

)

;

This joins two tables of a parent/child relationship—the data has been set up so that each

parent row has eight related child rows. The query uses a subquery based on values found in

the parent to eliminate some of the data. (The no_unnest hint in the extract is there to make 9i

and 10g reproduce the default behavior of 8i.)

When the optimizer can’t fold a subquery into the main body of a query, the test performed

by the subquery occurs at a very late stage of execution. In this example, the subquery would

normally take place after the join to the child table and (because of the way I have designed the

example) there will be lots of unnecessary joins to child rows from parent rows that should

have been discarded before the join took place, and the workload will be higher than necessary. (It

is also possible that in more general cases, the subquery could execute much too often, but this

may not occur because of the special filter optimization described later on in this chapter.)

In cases like this, you may want to override the default behavior. To do this, you can use

the push_subq hint, as I have done in the example, to force the optimizer to generate an execution

plan that applies the subquery at the earliest possibly moment.

With autotrace enabled to produce both the execution plan and the execution statistics,

we can see how the plan and statistics change as we introduce the hint (I’ve only reported the

one statistic that actually changed):

Execution Plan (8.1.7.4 WITHOUT push_subq hint - subquery postponed)

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=22 Card=7 Bytes=126)

1 0 FILTER

2 1 NESTED LOOPS (Cost=22 Card=7 Bytes=126)

3 2 TABLE ACCESS (BY INDEX ROWID) OF 'PARENT' (Cost=4 Card=6 Bytes=54)

4 3 INDEX (RANGE SCAN) OF 'PAR_PK' (UNIQUE) (Cost=2 Card=6)

5 2 TABLE ACCESS (BY INDEX ROWID) OF 'CHILD' (Cost=3 Card=817 Bytes=7353)

6 5 INDEX (RANGE SCAN) OF 'CHI_PK' (UNIQUE) (Cost=2 Card=817)

7 1 TABLE ACCESS (BY INDEX ROWID) OF 'SUBTEST' (Cost=2 Card=1 Bytes=14)

8 7 INDEX (UNIQUE SCAN) OF 'SUB_PK' (UNIQUE) (Cost=1 Card=1)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 213

Statistics

1224 consistent gets

Execution Plan (8.1.7.4 WITH push_subq hint - early subquery)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=22 Card=7 Bytes=126)

1 0 NESTED LOOPS (Cost=22 Card=7 Bytes=126)

2 1 TABLE ACCESS (BY INDEX ROWID) OF 'PARENT' (Cost=4 Card=6 Bytes=54)

3 2 INDEX (RANGE SCAN) OF 'PAR_PK' (UNIQUE) (Cost=2 Card=6)

4 2 TABLE ACCESS (BY INDEX ROWID) OF 'SUBTEST' (Cost=2 Card=1 Bytes=14)

5 4 INDEX (UNIQUE SCAN) OF 'SUB_PK' (UNIQUE) (Cost=1 Card=1)

6 1 TABLE ACCESS (BY INDEX ROWID) OF 'CHILD' (Cost=3 Card=817 Bytes=7353)

7 6 INDEX (RANGE SCAN) OF 'CHI_PK' (UNIQUE) (Cost=2 Card=817)

Statistics

 320 consistent gets

As you can see, the number of logical I/Os has dropped significantly. If you run a more

thorough analysis of the work done, you will also find that various other measures of the work

done (CPU used, latch gets, 'buffer is pinned count') drop in a similar fashion—so the benefit

you can see in the consistent gets is a real benefit. (The costs of the two execution plans for

both 9i and 10g nearly reflect this drop although, as you can see from the preceding example,

both execution plans have the same cost in 8i.)

Note how the first execution plan has a filter operation in line 1, with child operations in

lines 2 and 7. This means that too many rows are joined in line 2, and then every row returned

by the join is subject to the subquery test (although the filter optimization described later in

this chapter made this step a negligible overhead).

In the second execution plan, there is no apparent filter operation, but you will notice

that the nested loop at line 1 still has tables parent and child as its child operations (lines 2 and 6).

However, the table called subtest now appears in line 4 as a child operation to line 2, which is

the table access to table parent.

In fact, the execution plan is not telling us the whole truth. But you have to switch to 9i

and look at the view v$sql_plan_statistics to work out what’s really happening—and even

then, the image you get of the execution plan is misleading. The following plan comes from

v$sql_plan after running the query with the push_subq hint—but the second and third columns

show the last_starts and last_output_rows figures from the dynamic performance view

v$sql_plan_statistics:

214 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

ID Starts Rows Plan (9.2.0.6 - v$sql_plan_statistics - with push_subq hint)

-- ------ ------ --

 0 SELECT STATEMENT (all_rows)

 1 1 8 TABLE ACCESS (analyzed) CHILD (by index rowid)

 2 1 10 NESTED LOOPS

 3 1 1 TABLE ACCESS (analyzed) PARENT (by index rowid)

 4 1 101 INDEX (analyzed) PAR_PK (range scan)

 5 101 1 TABLE ACCESS (analyzed) SUBTEST (by index rowid)

 6 101 101 INDEX (analyzed) SUB_PK (unique scan)

 7 1 8 INDEX (analyzed) CHI_PK (range scan)

Notice that line 6 is executed 101 times, returning 101 rows, and then line 5 is executed

101 times, returning just one row. But why is line 6 executed 101 times? Because line 4 returns

101 rows, and each row has to be checked by the subquery. The subquery is occurring at the

earliest possible moment—which is when the index leaf block is being read—and only one

index entry survives the filter test, leading to just one access to the table.

In principle, I think the execution plan ought to look like the following so that you can see

more clearly what’s really going on:

ID Starts Rows Plan (hypothetical)

-- ------ -------- -----------------------------

 0 SELECT STATEMENT (all_rows)

 1 1 8 TABLE ACCESS (analyzed) CHILD (by index rowid)

 2 1 10 NESTED LOOPS

 3 1 1 TABLE ACCESS (analyzed) PARENT (by index rowid)

 4 1 1 FILTER

 5 1 101 INDEX (analyzed) PAR_PK (range scan)

 6 101 1 TABLE ACCESS (analyzed) SUBTEST (by index rowid)

 7 101 101 INDEX (analyzed) SUB_PK (unique scan)

 8 1 8 INDEX (analyzed) CHI_PK (range scan)

I’m not sure how many people would be happy with an execution plan that showed a line

between a table and the index that was used to access the table though. So maybe that’s why it

has been suppressed. In fact, the default mechanisms that 9i and 10g use for this query are

completely different from the mechanisms that 8i uses, so the whole problem of how and

where to represent filters may become irrelevant in future releases anyway.

THE ORDERED_PREDICATES HINT

The ordered_predicates hint is sometimes mentioned in these circumstances. However, this does not

allow the optimizer to perform a subquery before a join, its purpose is to control the order that predicates will

be applied when the optimizer says, “I am now at table X, and have N single table predicates that are now relevant.”

The script ord_pred.sql in the online code suite demonstrates this.

In passing, it is commonly stated (and even appears in most versions of the Oracle Performance and

Tuning Guide) that the ordered_predicates hint goes after the where. This is wrong—it goes after the

select just like any other hint. The ordered_predicates hint is deprecated in 10g, unfortunately.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 215

Filter Optimization

In the first example of this chapter—which selects all employees who earn more than the

average for their department—I showed that 10g had worked out that it needed to execute the

correlated subquery only six times, and had therefore worked out a suitable cost for the execu-

tion of the query.

In fact, the model used by 10g for the calculation reflects the run-time method that Oracle

has been using for years—at least since the introduction of 8i. The execution plan looks as if the

subquery will be executed once for each row returned from the driving table (which is what

would have happened in 7.3.4, and is how the mechanism is still described in the 9.2 Performance

Guide and Reference [Part A96533-01], page 2-13, where it says, “In this example, for every row

meeting the condition of the outer query, the correlated EXISTS subquery is executed.”) but the

run-time code is actually much more economical than that.

As I pointed out earlier, Oracle will attempt to execute the subquery just six times, once per

department, remembering each result for future use. For 8i, you can only infer this by running

the query and looking at the session’s statistics for the number of tablescans, logical I/Os, and

rows scanned. From 9i (release 2) onward, you can run with the parameter statistics_level

set to all and then query v$sql_plan_statistics directly for the number of times each line of

the execution plan was started.

By building various test cases (for example, script filter_cost_02.sql in the online code

suite), it is possible to work out what is probably happening in a subquery filter; and I believe

that the runtime engine does the following each time it picks a value from the driving table:

if this is the first row selected from the driving table

 execute the subquery with this driving value

 retain the driving (input) and return (output) values as 'current values'

 set the 'current values' status to 'not yet stored'.

else

 if the driving value matches the input value from the 'current values'

 return the output value from the 'current values'

 else

 if the status of the 'current values' is 'not yet stored'

 attempt to store the 'current values' in an in-memory hash-table

 if a hash collision occurs

 discard the 'current values'

 end if

 end if

 probe the hash table using the new driving value

 if the new driving value is in the hash table

 retrieve the stored return value from the in-memory hash table

 retain these values as the 'current values'

 set the 'current values' status to 'previously stored'

 else

 execute the subquery with the new driving value

 retain the driving and return (output) values as 'current values'

 set the 'current values' status to 'not yet stored'.

 end if

216 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

 return the output value from the 'current values'

 end if

end if

The most important lesson to learn from this is that a reported execution plan is not neces-

sarily a totally accurate representation of the mechanics of what is really going on. In fact, this

is likely to be true in more cases than just the subquery filter—the layout of an execution plan

is very clean and simple; it may not always be possible to express exactly what is really going to

happen and keep that level of clarity and simplicity in the execution plan.

There are a couple of other interesting side issues in this example. Oracle limits the size of

the in-memory hash table (presumably to stop excessive memory consumption in unlucky cases).

In 8i and 9i the limit on the size of the hash table seems to be 256 entries, in 10g it seems to be

1,024.

This means the performance of a subquery filter can be affected by the number of different

driving values that exist, the order in which they appear in the pass through the driving table,

and the actual values. If the hash table is simply too small, or you have driving values that just

happen to cause excessive collisions on the hash table, then you may execute the subquery far

more frequently than is strictly necessary.

As a simple demonstration of this, try the following with the data created by the script for

the first test in this chapter (see script filter_cost_01a.sql in the online code suite):

update emp

set dept_no = 67 -- first collision value for 9i

-- set dept_no = 432 -- first collision value for 10g

where rownum = 1

;

select

 /*+ no_merge(iv) */

 count(*)

from (

 select outer.*

 from emp outer

 where outer.sal > (

 select /*+ no_unnest */

 avg(inner.sal)

 from emp inner

 where inner.dept_no = outer.dept_no

)

) iv

;

Since I want to execute this query, not just run it through autotrace, I’ve taken the original

query and wrapped it in an inline view to count the result set. The no_merge hint is there to

ensure that the optimizer does not try to get too clever and transform the query before doing

the count. I want to make sure that this query does the same amount of work as the original

query; the count(*) in the outer query is just there to keep the output small. In this form, the

no_merge() hint references the alias of a view that appears in its from clause.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 217

BLOCKING MERGE JOINS

The no_merge hint has occasionally been described in the literature (possibly even in the Oracle manuals at

one stage) as something that stops the optimizer from doing a merge join. This is not correct. The no_merge

hint stops the optimizer from trying to get too clever with views (stored and inline) and noncorrelated in subque-

ries. Technically, it stops complex view merging from taking place.

If you want to block a merge join, there is no direct hint until you get to 10g and the arrival of the

no_use_merge hint.

Check how long the count(*) takes to complete before the update, and then try it after the

update. On my 9i system running at 2.8 GHz, the query run time changed from 0.01 seconds to

14.22 seconds (all of it CPU).

The value 67 just happens to collide in the hash table with the value 0. The side effect of

setting the dept_no of just the first row to 67 was that the average salary for dept_no = 67 went

into the hash table, blocking the option for Oracle to store the average salary for dept_no = 0,

so the subquery got executed 3,332 times, once for every row with dept_no = 0. (Because the

hash table changes size in 10g, the value 432 is the first value that collides with 0.) I can’t help

thinking that a statistically better strategy would be to replace old values when a collision

occurs—but then I would just have to modify my code slightly to produce an example where

that strategy would also burn excessive amounts of CPU.

You will also note that the algorithm allows for checking the next row against the previous

row to avoid the need to search the hash table. This means you generally get a small CPU benefit

if the driving rows happen to be in sorted order. Moreover, if you sort the driving rows, the

number of distinct values becomes irrelevant because the subquery executes only when the

driving value changes—which may give you a manual optimization option in special cases.

The fact that the actual run-time resource consumption of this execution plan can vary so

dramatically with the number and order of different data items is not considered in the cost

calculation. Of course, it’s a little unfair to make that last comment—I don’t think it would be

possible to collect the necessary information in a cost-effective fashion, so some typical scenario

has to be built into the code. On the other hand, it is important to recognize that this is one of

those cases where cost and resource consumption may have very little to do with each other.

You will probably see simple subquery filtering less frequently from 9i onward because

unnesting (controlled largely by the change in the default value of parameter _unnest_subquery)

happens so much more frequently. However, as you have seen, the filter operation can be

very efficient, and some people have found that when they upgraded to 9i, some of their SQL

ran much more slowly because an efficient filter had been turned into a much less efficient

unnested join. (If you hit this problem, think about using the no_unnest hint that I used in my

sample code for 9i and 10g.) You should also remember that there are cases where the presence

of multiple subqueries makes unnesting impossible—if you have cases like this, each remaining

subquery will get its own hash table.

Scalar Subqueries

I have picked scalar subqueries as my next topic because their implementation is tied so closely

to the implementation of the filter operation described previously. It would be interesting to

218 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

discover whether the filter optimization came about because of the work done by the developers

to accommodate scalar subqueries, or whether the scalar subquery became viable because of the

optimization method created for filtering subqueries.

Consider the following rewrite of our original query (see scalar_sub_01.sql in the online

code suite):

select

 count(av_sal)

from (

 select /*+ no_merge */

 outer.dept_no,

 outer.sal,

 outer.emp_no,

 outer.padding,

 (

 select avg(inner.sal)

 from emp inner

 where inner.dept_no = outer.dept_no

) av_sal

 from emp outer

)

where

 sal > av_sal

;

In this query, I’ve written a (correlated) subquery in the select list of another query. In this

context, we refer to this subquery as a scalar subquery, i.e., a query that returns a single value

(one column and at most one row—and if the query return no rows, its return value is deemed

to be a null). In this example, I have also demonstrated the alternative form of the no_merge

hint—the hint is embedded in the view that should not be merged and so does not need to

reference an alias.

Since the subquery is now a column in the main select list, you could easily assume that it

had to be executed once for each row returned by the main select statement. However, the code

behaves just like the filtering code—and when we check the execution plan, we discover why:

Execution Plan (autotrace 9.2.0.6)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=35035 Card=1 Bytes=26)

1 0 SORT (AGGREGATE)

2 1 VIEW (Cost=35035 Card=1000 Bytes=26000)

3 2 FILTER

4 3 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=1000 Bytes=8000)

5 3 SORT (AGGREGATE)

6 5 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=3333 Bytes=26664)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 219

The bit in the middle has (apparently) been transformed to the very same filtered subquery

that our first experiment used. Note the funny thing though—this execution plan is from 9i,

and in the original experiment, I had to use a no_unnest hint to force the optimizer to use the

preceding execution plan. In this case, the optimizer has transformed once (from a scalar

subquery to a filter subquery) but has been unable to perform the transformation that would

have unnested the filtered subquery. In principle, that’s one of the effects of the no_merge hint,

and some other queries I tried that were similar to the example did transform into hash joins

when I removed the hint. However, none of them would transform in 10g (even when hinted

with an unnest hint); moreover, the sample query actually crashed my session in 9.2.0.6 when I

removed the no_merge hint. There are possibly a few refinements still needed in the code that

handles scalar subqueries.

If you eliminate the where clause in the sample query, so that the subquery result is reported

but not used in the predicate, you will find that (a) lines 3, 5, and 6 disappear—there is no clue

that the subquery has even happened, the code is down to that of a single tablescan—and, (b)

the work done by the query is still consistent with executing the scalar subquery just six times.

Execution Plan (9.2.0.6)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=35 Card=1 Bytes=13)

1 0 SORT (AGGREGATE)

2 1 VIEW (Cost=35 Card=20000 Bytes=260000)

3 2 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=60000)

However, to make the point more firmly that the same optimization really is in place, we

could do something more dramatic (see scalar_sub_02.sql in the online code suite).

create or replace function get_dept_avg(i_dept in number)

return number deterministic

as

 m_av_sal number;

begin

 select avg(sal)

 into m_av_sal

 from emp

 where dept_no = i_dept

 ;

 return m_av_sal;

end;

/

select

 count(av_sal)

220 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

from (

 select /*+ no_merge */

 dept_no,

 sal,

 emp_no,

 padding,

 (select get_dept_avg(dept_no) from dual) av_sal

 -- get_dept_avg(dept_no) av_sal

 from emp

)

;

I have included two possible lines in the final query—one that calls the function

get_dept_avg() explicitly, and one that calls it by doing a scalar subquery that accesses the

dual table.

DETERMINISTIC FUNCTIONS

A deterministic function, according to the requirements of Oracle, is one that is guaranteed to return the same

result every time you give it the same set of inputs. If you use function-based indexes (or, as they should be

described, indexes with virtual columns), then the virtual columns have to be defined using deterministic

functions.

The point of the deterministic function is that if Oracle can determine that the current call to the function

is using the same inputs as the previous call, then it can use the previous result and avoid the call—or so the

manuals say. As far as I can tell, this feature of deterministic functions has never been implemented. But the

capability can be emulated by scalar subqueries.

If you run the version of the query that uses the scalar subquery, it will run very quickly,

executing the subquery just six times. If you run the version that uses the direct function call, it

will take much longer to run, and call the function once for every row in the main body of the

query. (The fast version will suffer from exactly the same hash-collision problem of the normal

subquery if you change one of the emp rows to have dept_no = 67—or 432 for 10g).

This is a fantastic performance benefit. The only drawback is that you can’t see the subquery

at all in the execution plan, which is identical to the execution plan I showed earlier where the

scalar subquery was reported as a column in the output but not used in the where clause.

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=35 Card=1 Bytes=13)

1 0 SORT (AGGREGATE)

2 1 VIEW (Cost=35 Card=20000 Bytes=260000)

3 2 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=60000)

Note the complete absence of any clue that there may be anything more to this query than

a simple full tablescan of the emp table (and the subsequent aggregation, of course).

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 221

The really wonderful thing about scalar subqueries, though, is that they make it very easy

to find out more about the limitations on the hash table. Remember my comment in the

section “Filter Optimizations” that the limit appeared to be 256 in 8i and 9i, and 1,024 in 10g.

I had to do a bit of hard work to figure that one out (and it’s not the whole story in 10g anyway).

But look at what you can do with scalar subqueries:

select

 (select pack1.f_n(16) from dual) x

from

 dual

;

We have a scalar subquery that calls a packaged function with a single numeric input (see

script scalar_sub_03.sql in the online code suite). The package is defined as follows—note

particularly the global variable and the way that the two functions increment the global variable

before returning their input:

create or replace package pack1 as

 g_ct number(10) := 0;

 function f_n(i in number) return number;

 function f_v(i in varchar2) return varchar2;

end;

/

create or replace package body pack1 as

function f_n(i in number) return number

is

begin

 pack1.g_ct := pack1.g_ct + 1;

 return i;

end

;

function f_v(i in varchar2) return varchar2

is

begin

 pack1.g_ct := pack1.g_ct + 1;

 return i;

end

;

end;

/

222 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

If, instead of using the scalar subquery against table dual, we use it against a table that

contains the number from 1 to 16,384 twice (such as the following), we can observe something

interesting:

create table t1 as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 3000

)

select

 rownum n1,

 lpad(rownum,16,'0') v16,

 lpad(rownum,32,'0') v32

from

 generator v1,

 generator v2

where

 rownum <= 16,384

;

insert /*+ append */ into t1

select * from t1

;

select

 count(distinct x)

from (

 select /*+ no_merge */

 (select pack1.f_n(n1) from dual) x

 from

 t1

)

;

Since every value from 1 to 16,384 appears in the table (in numeric form, and two zero-

padded character forms), when we run the scalar subquery, we are going to have lots of hash

collisions on the hash table. But we are also going to fill the hash table fairly rapidly on the first

pass through the 16,384 values, and then reuse the N values we have saved just once each on the

second pass through the 16,384 values in the table. Consequently, by the end of the query, the

value of the global variable pack1.g_ct will be short of the 32,768 rows in the table by exactly

the size of the hash table.

So all we have to do is this:

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 223

execute pack1.g_ct := 0;

-- execute the query

execute dbms_output.put_line('Hash table size: ' || (32768 - pack1.g_ct))

and we will get the size of the hash table directly; and the answer is

8i 256

9i 256

10g Depends on the function’s input, output, and the value of parameter
_query_execution_cache_max_size

You will notice that my package definition includes a function that accepts a character

input and returns a character output. I wrote this so that I could check whether the hash table

behaved differently when large character strings were involved. In 8i and 9i, there was no

change in the number of entries in the hash table as I went through various options of mixing

character and numeric inputs and outputs. But when I ran a version of the query that supplied

the zero-padded, 32-character string, returning the same string,the change in 10g was dramatic:

execute pack1.g_ct := 0;

select

 count(distinct x)

from (

 select /*+ no_merge */

 (select pack1.f_v(v32) from dual) x

 from

 t1

)

;

execute dbms_output.put_line('Hash table size: ' || (32768 - pack1.g_ct))

COUNT(DISTINCTX)

 16384

Hash table size: 16

As you can see, the hash table shrank to 16. By selecting a substr() of the function return,

I could increase the size of the hash table by decreasing the size of the substring. By supplying

character inputs to the function returning a number, I could decrease the size of the hash table

by increasing the size of the input string. It seemed likely that the size of the hash table was

controlled by a fixed memory limit, rather than an absolute number of hash entries.

Since the size of the hash table dropped to 16 when I used a function returning an uncon-

strained string—which really means varchar2(4,000), I looked for any parameter with a default

value of 64, or 65,536, and found the parameter _query_execution_cache_max_size. Sure enough,

224 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

you can increase the size of the hash table up to a limit of 16,384 entries (the size is always a

power of two) by increasing this parameter.

The upshot of this series of test is that you may find after upgrading to 10g that some queries

that include scalar subqueries or filter subqueries run more slowly—even though their execution

plans do not change—because their input or output values are quite long. If this is the case, you

have two manual options for improving the performance. Try to reduce the total size of the

input and output (concatenating strings, explicit substrings), or change the session setting for

the _query_execution_cache_max_size parameter (although, as ever, you should be aware that

messing with hidden parameters is something that should not be done without approval from

Oracle support, and isn’t necessarily going to be a stable solution on the next upgrade).

Subquery Factoring

I don’t have to say much about subquery factoring—you’ve seen it in action a few times in the

book already, and every time you’ve seen it, I’ve used a hint to make the optimizer do what I

want rather than taking a cost-based decision.

If we take the query I used to create the table for the first example in this chapter, and

remove the hint, it looks like this:

with generator as (

 select

 rownum id

 from all_objects

 where rownum <= 1000

)

select

 mod(rownum,6),

 rownum,

 rownum,

 rpad('x',60)

from

 generator v1,

 generator v2

where

 rownum <= 20000

;

The main body of the query refers (twice) to an object I have called generator, and the

initial section of the query tells us how generator is defined. At run time the optimizer has a

choice: it can substitute the defining text inline whenever it sees the name generator, or it can

create a temporary table once to hold the results of running the query that defines generator

and use that temporary table whenever it sees the name generator.

Two hints are available for use with subquery factoring: the materialize hint forces the

optimizer to create the temporary table, and the inline hint forces the optimizer to replace the

name with its defining text and optimize the resulting query.

Here are the two possible execution plans generated by the 10g dbms_xplan utility for the

preceding query (see script with_subq_01.sql in the online code suite). To keep the plan short,

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 225

I have replaced the view all_objects in the definition of generator with the table t1, created as

select * from all_objects.

Execution plan with the /*+ materialize */ hint:

--

| Id | Operation |Name |Rows |Bytes |Cost |

--

| 0 | SELECT STATEMENT | |20000 | | 97 |

| 1 | TEMP TABLE TRANSFORMATION | | | | |

| 2 | LOAD AS SELECT | | | | |

|* 3 | COUNT STOPKEY | | | | |

| 4 | TABLE ACCESS FULL |T1 |44666 | | 95 |

|* 5 | COUNT STOPKEY | | | | |

| 6 | NESTED LOOPS | |20000 | | 2 |

| 7 | VIEW | | 1 | | 1 |

| 8 | TABLE ACCESS FULL |SYS_TEMP_0FD9D662D_543F90 |44666 | 567K| 2 |

| 9 | VIEW | |20000 | | 1 |

| 10 | TABLE ACCESS FULL |SYS_TEMP_0FD9D662D_543F90 |44666 | 567K| 2 |

--

Predicate Information (identified by operation id):

 3 - filter(ROWNUM<=1000)

 5 - filter(ROWNUM<=20000)

Execution plan with the /*+ inline */ hint:

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | 11 | | 3 |

|* 1 | COUNT STOPKEY | | | | |

| 2 | NESTED LOOPS | | 11 | | 3 |

| 3 | VIEW | | 1 | | 1 |

|* 4 | COUNT STOPKEY | | | | |

| 5 | TABLE ACCESS FULL| T1 | 44666 | | 95 |

| 6 | VIEW | | 11 | | 2 |

|* 7 | COUNT STOPKEY | | | | |

| 8 | TABLE ACCESS FULL| T1 | 44666 | | 95 |

--

Predicate Information (identified by operation id):

 1 - filter(ROWNUM<=20000)

 4 - filter(ROWNUM<=1000)

 7 - filter(ROWNUM<=1000)

226 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

If you check the Rows column from both execution plans, you will see that the numbers

don’t really make sense. Particularly, the effects of the rownum <= 1000 clauses have not echoed

back into the column, and the second execution plan shows a final row count of 11, rather than

the 20,000 we are aiming for.

Moreover, you will notice that the final cost of the execution plan with the inline hint is

clearly incorrect—each of the two tablescans of t1 table cost 95—and yet the total cost of the

query is reported as 3, although it should clearly be at least 190 (2 * 95).

In fact, even though the execution plan with the inline hint has been reported with the

lower cost, it is the execution plan where the subquery has been materialized that is used when

the query is left to run unhinted.

The reason for these anomalies is a consequence of the rownum predicate. If you check the

10053 trace for these queries, you will find that the optimizer (in 10g only) has switched into

first_rows(n) optimization. In effect, because my final predicate is rownum <= 20000, the opti-

mizer has run the calculations that would be used if I had included a first_rows(20000) hint in

the query.

The trace file shows the optimizer making two passes at the calculations—one that works out

the final cardinality that you would get by joining the full generator view to itself (in my case a total

of 1,995,239,224 rows) and one that is based on a scaling factor of 0.000010023905893 (which is

20,000 / 1,995,239,224).

I suspect this means the execution plans are displaying some figures that show the full cost

of an operation, and some figures that are allowing for the scaled cost of the operation. It is

unfortunate that my rather convenient trick for generating data happens to have found a

complicated error in the presentation of execution plans for subquery factoring.

A Little Entertainment

One of the nice things about subquery factoring is that it allows you to use a divide-and-conquer

approach (also known as peeling the onion) to complicated problems. In the past, you may

have used inline views with the no_merge hint to work your way to a solution—but the no_merge

hint is a little restrictive because it does force the optimizer into instantiating intermediate

data as temporary data sets, and can be overly aggressive about restricting the options for

clever transformations.

With subquery factoring, you can write a complex query in simple pieces, and let the opti-

mizer choose whether to generate the intermediate data sets or construct the more complex,

expanded form of the query and optimize it.

The technique is one I used to solve the following puzzle that someone posed on the

comp.databases.oracle.server newsgroup a couple of years ago; asking for a single SQL state-

ment that produced the correct answer without preprogramming the answer into the SQL.

Two mathematicians meet at a college reunion and start to talk about their families. Being

mathematicians, they cannot help making their conversation a little obscure.

Mathematician X: Do you have any children?

Mathematician Y: Yes, I have three daughters.

Mathematician X: And how old are they?

Mathematician Y: If you multiply their ages, the result is 36.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 227

Mathematician X: That isn’t enough information.

Mathematician Y: If you sum their ages, the result is the same as the number of people in

this room.

Mathematician X (after glancing around the room): That still isn’t enough information.

Mathematician Y: My oldest daughter has a pet hamster with a wooden leg.

Mathematician X: And are the two-year-olds identical twins?

So how can you write a SQL statement that derives the ages of the three girls, and the

number of people in the room? You might like to work out the ages, and figure out how many

people mathematician X could see in the room before you read any further.

As a first step, you need to know that the basic syntax for subquery factoring allows for

expressions like

with

 alias1 as (subquery1),

 alias2 as (subquery2),

 ...

 aliasN as (subqueryN)

select

 ...

;

So let’s build a solution to the mathematicians’ puzzle (see script with_subq_02.sql in the

online code suite).

First we note that there are three daughters whose ages multiply up to 36. We can assume

that the ages are complete years, and therefore must have a minimum of 1 and a maximum of 36—

so let’s generate a table with 36 rows, one for each possible age:

with age_list as (

 select rownum age

 from all_objects

 where rownum <= 36

),

But there are three of them, so we need three copies of the table, and when you multiply

the three ages together, the total is 36—and then we will be adding the ages together, so let’s do

that at the same time. Notice that the preceding section of SQL ended with a comma, and the

following section simply starts with a new alias (I don’t repeat the with):

product_check as (

 select

 age1.age as youngest,

 age2.age as middle,

 age3.age as oldest,

 age1.age + age2.age + age3.age as summed,

 age1.age * age2.age * age3.age as product

228 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

 from

 age_list age1,

 age_list age2,

 age_list age3

 where

 age2.age >= age1.age

 and age3.age >= age2.age

 and age1.age * age2.age * age3.age = 36

),

Note how I’ve eliminated permutations of each possible result by introducing the predicate

age2.age >= age1.age and age3.age >= age2.age. This means if, for example, I’ve listed (2,3,6),

I don’t also list (6,3,2), (3,2,6), and the other three permutations. At this point, we have all

the possible arrangements of ages that multiply up to 36. If we selected from product_check, we

would get the following output:

 YOUNGEST MIDDLE OLDEST SUMMED PRODUCT

---------- ---------- ---------- ---------- ----------

 1 1 36 38 36

 1 2 18 21 36

 1 3 12 16 36

 1 4 9 14 36

 1 6 6 13 36 **

 2 2 9 13 36 **

 2 3 6 11 36

 3 3 4 10 36

We now get told that the sum of the ages matches the number of people in the room—but

mathematician Y looks around, counts the number of people in the room, and cannot deduce

the ages! So the (unknown) number of people in the room must identify at least two rows in the

product_check set—in other words, there must be at least two rows that sum to the same value

(see the rows marked with an **). So let’s narrow the output from product_check to just those

rows without asking for them explicitly:

summed_check as (

select

 youngest, middle, oldest, summed, product

from

 (

 select

 youngest, middle, oldest, summed, product,

 count(*) over(partition by summed) ct

 from product_check

)

where ct > 1

)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 229

In this subquery, I’ve used the analytic version of the count() function, partitioning over

the sum of ages (column summed). The count will be greater than one only for the sums that

appear more than once—so at this point we finally say

select *

from summed_check

;

 YOUNGEST MIDDLE OLDEST SUMMED PRODUCT

---------- ---------- ---------- ---------- ----------

 1 6 6 13 36

 2 2 9 13 36

We now know (as mathematician Y would have observed by looking around) that there

were 13 people in the room. But mathematician Y is still stuck with two rows—until he hears

about the hamster (with the completely irrelevant wooden leg) and the problem is resolved by

a common convention (in the UK, at least) about the ages of twins. The oldest girl has a pet

hamster—but the first row doesn’t have an oldest girl, only a youngest girl and two older twins.

The second row has an oldest girl and two younger twins, so the final, complete query should

be as follows:

with age_list as (

 select rownum age

 from all_objects

 where rownum <= 36

),

product_check as (

 select

 age1.age as youngest,

 age2.age as middle,

 age3.age as oldest,

 age1.age + age2.age + age3.age as summed,

 age1.age * age2.age * age3.age as product

 from

 age_list age1,

 age_list age2,

 age_list age3

 where

 age2.age >= age1.age

 and age3.age >= age2.age

 and age1.age * age2.age * age3.age = 36

,

summed_check as (

select

 youngest, middle, oldest, summed, product

230 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

from

 (

 select

 youngest, middle, oldest, summed, product,

 count(*) over(partition by summed) ct

 from product_check

)

where ct > 1

)

select *

from summed_check

where oldest > middle

;

Of course, it’s not really a serious piece of SQL (check out Tom Kyte’s web site, http://

asktom.oracle.com, for a demonstration of how to use this technology to arrange a golf tourna-

ment if you want a more practical example), but it does show the principles.

You will notice that in this example, I used each subquery in the subsequent subquery—

this is just one of many possible options. There is a requirement that every named subquery

has to be used at least once; otherwise you receive the following Oracle error:

ORA-32035: unreferenced query name defined in WITH clause

But apart from this requirement, you can be very flexible with the named subqueries. My

trivial example of generating a large data set used the same subquery twice—in general, any

level of subquery could use many copies of any, or even all, of the subqueries in the levels above it.

(In DB2, a subquery can even reference itself, but that feature is not yet available in Oracle.)

Complex View Merging

In Chapter 1, you saw an example of complex view merging (see script view_merge_01.sql in

the online code suite). We created an aggregate view over a table, and then joined that view to

another table:

create or replace view avg_val_view

as

select

 id_par,

 avg(val) avg_val_t1

from t2

group by

 id_par

;

select

 /* no_merge(avg_val_view) */ -- include a + to block merging.

 t1.vc1,

 avg_val_t1

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 231

from

 t1,

 avg_val_view

where

 t1.vc2 = lpad(18,32)

and avg_val_view.id_par = t1.id_par

;

Faced with this query, the optimizer has two options available to it to optimize the query:

create a result set for the aggregate view and then join it to the base table, or expand the view

out to join the two base tables and then aggregate the join:

Execution Plan (9.2.0.6 hinted to instantiate the view)

--

SELECT STATEMENT Optimizer=CHOOSE (Cost=15 Card=1 Bytes=95)

 HASH JOIN (Cost=15 Card=1 Bytes=95)

 TABLE ACCESS (FULL) OF 'T1' (Cost=2 Card=1 Bytes=69)

 VIEW OF 'AVG_VAL_VIEW' (Cost=12 Card=32 Bytes=832)

 SORT (GROUP BY) (Cost=12 Card=32 Bytes=224)

 TABLE ACCESS (FULL) OF 'T2' (Cost=5 Card=1024 Bytes=7168)

Execution Plan (9.2.0.6 allowed to merge the view)

--

SELECT STATEMENT Optimizer=CHOOSE (Cost=14 Card=23 Bytes=1909)

 SORT (GROUP BY) (Cost=14 Card=23 Bytes=1909)

 HASH JOIN (Cost=8 Card=32 Bytes=2656)

 TABLE ACCESS (FULL) OF 'T1' (Cost=2 Card=1 Bytes=76)

 TABLE ACCESS (FULL) OF 'T2' (Cost=5 Card=1024 Bytes=7168)

Checking the 10053 trace file (see Chapter 14 for more on the CBO trace file) for the

unhinted query in 8i, you would find the following two general plans sections (from which I’ve

listed just the headlines—typically each of the general plans starts with a new Join order[1]).

This shows you that 8i considered only the option to create the aggregate view and join to the

first table. You will also notice that when evaluating strategies for creating the aggregate view,

the first of the general plans includes a recosting step to consider the use of a convenient index

on table t2 to calculate the aggregate without performing a sort—and this leads to an extra

Join order[1].

Join order[1]: T2 [T2]

****** Recost for ORDER BY (using join row order) *******

Join order[1]: T2 [T2]

Join order[1]: T1 [T1] AVG_VAL_VIEW [AVG_VAL_VIEW]

Join order[2]: AVG_VAL_VIEW [AVG_VAL_VIEW] T1 [T1]

Checking the trace file for the unhinted query in 9i, you would find the following single

general plans section. After the upgrade (in which the default value for parameter _complex_

view_merging changed from false to true), the optimizer considers only the option for merging

the view and performing the join before aggregating. You will notice there is no reference to

232 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

recosting—it isn’t relevant under this strategy. When you add the no_merge() hint, the trace file

nearly switches back to the 8i version, although it doesn’t try recosting for the index on t2—and

that’s an interesting little detail in its own right.

Join order[1]: T1[T1]#0 T2[T2]#1

Join order[2]: T2[T2]#1 T1[T1]#0

Checking the trace file for the unhinted query in 10g, you would find the following four

general plans sections. And in this trace, you can see that the optimizer has calculated the cost

of both options, and then selected the cheaper one. In fact, there were two sets of calculations

for joining the two base tables. The only difference between the last two sets of calculations

seemed to be the absence of a cost for carrying the join column—and I haven’t been able to

work out the significance of what that represents.

Join order[1]: T2[T2]#0

Join order[1]: T1[T1]#0 AVG_VAL_VIEW[AVG_VAL_VIEW]#1

Join order[2]: AVG_VAL_VIEW[AVG_VAL_VIEW]#1 T1[T1]#0

Join order[1]: T1[T1]#0 T2[T2]#1

Join order[2]: T2[T2]#1 T1[T1]#0

Join order[1]: T1[T1]#0 T2[T2]#1

Join order[2]: T2[T2]#1 T1[T1]#0

Pushing Predicates

Some restrictions exist on view merging, and these vary from version to version of Oracle.

However, even when the optimizer is not allowed to merge a view into the main body of a

query, there are cases in some nested loop joins where the optimizer can push a join predicate

into a view. This results in many small view instantiations, rather than one large view instanti-

ation. Although I have seen pushed predicates being reported in execution plans from time to

time, I found it quite hard to create a realistic example when I needed one, so I’ve fallen back

on a limitation in the optimizer to demonstrate the feature (see push_pred.sql in the online

code suite). The most likely case where pushing predicates will occur is when you do outer

joins into multitable views:

create or replace view v1 as

select

 t2.id1,

 t2.id2,

 t3.small_vc,

 t3.padding

from

 t2,

 t3

where

 t3.id1 = t2.id1

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 233

and t3.id2 = t2.id2

;

select

 t1.*,

 v1.*

from

 t1,

 v1

where

 t1.n1 = 5

and t1.id1 between 10 and 50

and v1.id1(+) = t1.id1

;

The execution plan for this query shows the predicate pushing in action. In this case, I have

used the 9i dbms_xplan package to show the plan, as the filter_predicates and access_predicates

columns of the plan_table are important.

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 1 | 240 | 5 |

| 1 | NESTED LOOPS OUTER | | 1 | 240 | 5 |

|* 2 | TABLE ACCESS BY INDEX ROWID | T1 | 1 | 119 | 3 |

|* 3 | INDEX RANGE SCAN | T1_PK | 42 | | 2 |

| 4 | VIEW PUSHED PREDICATE | V1 | 1 | 121 | 2 |

|* 5 | FILTER | | | | |

| 6 | NESTED LOOPS | | 1 | 129 | 3 |

|* 7 | INDEX RANGE SCAN | T2_PK | 1 | 9 | 2 |

| 8 | TABLE ACCESS BY INDEX ROWID| T3 | 1 | 120 | 1 |

|* 9 | INDEX UNIQUE SCAN | T3_PK | 1 | | |

Predicate Information (identified by operation id):

 2 - filter("T1"."N1"=5)

 3 - access("T1"."ID1">=10 AND "T1"."ID1"<=50)

 5 - filter("T1"."ID1"<=50 AND "T1"."ID1">=10)

 7 - access("T2"."ID1"="T1"."ID1")

 filter("T2"."ID1">=10 AND "T2"."ID1"<=50)

 9 - access("T3"."ID1"="T2"."ID1" AND "T3"."ID2"="T2"."ID2")

 filter("T3"."ID1">=10 AND "T3"."ID1"<=50)

234 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

Note especially line 4, with the operation view pushed predicate. This is the critical line

that tells you that the optimizer is pushing predicates.

You will also note, however, that lots of filter predicates are listed, and that there are four

separate occurrences of filter predicates of the form colX >= 10 and colX <= 50. The filter pred-

icates in lines 5, 7, and 9 are actually redundant and disappear in 10g—in fact, the filter

operation in line 5 of the execution plan itself disappears completely in 10g. However, it is quite

convenient that these predicates appeared in this example, as it allows me to point out that

they are not there as the result of predicate pushing, rather they are there as a result of transitive

closure, and could appear even in cases where you don’t see a pushed predicate line. Technically,

pushing predicates is about join predicates, which in this example is the access predicate of

line 7.

General Subqueries
It is very easy to request information using language that translates into subqueries.

• Give me a breakdown of sales from the store that had the highest profit in June.

• Give me the phone number of all customers whose zip code is in the Carlton advertising

region.

• List all employees who earn more than the average for their department.

Depending on the way the question is phrased and your familiarity with the way the under-

lying data is structured, you might take these English-language queries and pick one of several

different ways to express them in SQL.

In some cases, you may decide to do a very direct translation from the English because the

strategy for translation is very visible—perhaps there is an obvious sense of do X and then do Y

with the result that hints at a subquery structure. For example, the third item invites you to

think of a simple query to work out the average salary for a department, and then use it to filter

a query against employees:

Step 1:

 select avg(salary)

 from employees

 where department = {X}

 ;

Step 2:

 select *

 from employees emp1

 where salary > (

 select avg(salary)

 from employees emp2

 where emp2.department = emp1.department

)

 ;

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 235

Conversely, you may decide that some request can be rephrased to produce a much simpler

SQL statement, even if the English equivalent isn’t quite so direct. Consider the Carlton example—

you might very well start with a query against some table that allowed you to identify all the

zip codes covered by the Carlton advertising region, and then use this as an input to a more

complex query:

Step 1:

 select distinct zip_code from tableX where agent = 'CARLTON';

Step 2:

 select tel from customers where zip_code in (

 select /* distinct */ zip_code from tableX where agent = 'CARLTON'

);

On the other hand, it is probably much easier to spot in this case that a simple join between

tables would be a perfectly satisfactory and comprehensible way of acquiring the information,

provided we knew that each zip code appeared no more than once per agent—and had included

that fact as a constraint on the database. (Note the use of the distinct in the first of the two

preceding queries. The mechanism of an in subquery makes this implicit, which is why I have

commentedit out in the second query.)

select tel

from

 tableX,

 customers

where

 tableX.agent = 'CARLTON'

and customers.zip_code = tableX.zip_code

;

When we translate user requirements into SQL, we have a great deal of scope in how we

express ourselves. Ideally, of course, we want to express the problem in the way that fits our

natural language most easily while allowing the optimizer to operate the resulting query in the

most efficient fashion.

■Caution From time to time, I see cases where programmers have converted joins to subqueries, or

subqueries to joins—and have produced a SQL statement that is not logically identical to the original. Be very

careful with subqueries and rewrites.

Looking at things from the opposite view point: if we fire the following query at a general

purpose RBDMS, what could it do to resolve it?

select * from tableX where z_code in ('A','B','C');

One option would be to scan every row from tableX, and check the column z_code to see

if it was an 'A', 'B', or 'C'—a filtering operation. Another option might be to make use of a

236 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

convenient index that makes it very cheap to “find all the 'A's, then find all the 'B's, then find

all the 'C's”—a mechanism that I usually refer to as a driving operation.

The same possibility exists when the query becomes slightly more complex:

select * from tableX where z_code in (other query);

Should the RDBMS get all the rows from tableX, and operate the other query once for each

row, or should it somehow try to operate the other query once and use its result set to drive

into tableX?

If everything I’ve said in this section makes perfect sense to you, then you’ve understood

all there is to know (from a conceptual point of view) about subquery transformation. There are

ways to write SQL that are nice, easy, and intuitively obvious for the natural language speaker—

there are ways to operate SQL that allows the database engine to perform efficiently. The better

the optimizer is at translating between equivalent SQL statements, the less work you have to do

to tailor your queries to the needs of the database engine. Subquery transformation is one of

the growth areas in the Oracle optimization code aimed squarely at this issue.

Subquery Parameters

Just as an indication of how hard it is to keep track of what’s going on with subqueries, and

what special effects might, or might not, work, I’ve produced a little table of the parameters,

Table 9-1, relating to subquery transformation. (I may have missed a few—sometimes the

names and descriptions don’t give much of a clue to purpose.)

Table 9-1. Parameters for Handling Subqueries Keep Changing

Name 8i 9i 10g Description

_unnest_notexists_sq n/a single n/a Unnests not exists
subquery with one or more
tables if possible.

_unnest_subquery false true true Enables unnesting of
correlated subqueries.

_ordered_semi-join true true true Enable ordered semi-join
(exists) subquery.

_cost_equality_semi_join n/a true true Enables costing of equality
semi-join (exists).

_always_anti_join nested_loops choose choose Always use this method for
anti-join (not exists) when
possible.

_always_semi_join standard choose choose Always use this method for
semi-join (exists) when
possible.

_optimizer_correct_sq_selectivity n/a n/a true Forces correct computation
of subquery selectivity.

_optimizer_squ_bottomup n/a n/a true Enables unnesting of
subqueries in a bottom-up
manner.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 237

The number of parameters that didn’t exist before 10g should give you some pause for

thought—how many old rules of thumb are you going to have to forget regarding things you

shouldn’t do in SQL?

Then take a look at that parameter _unnest_notexists_sq. Why has it ceased to exist in

10g? Does this mean that the optimizer has only recently been enhanced to handle all possible

not exists subqueries, and no longer needs a parameter to keep it in check? Or does it mean

that the optimizer has decided to stop unnesting not exists subqueries? (There is an example

in the section “Anti-join Anomaly” that shows the answer to this question is no.)

What about the parameter _cost_equality_semi_join, which appeared in 9i? Why are there

two notes on MetaLink (258945.1 and 144967.1) that seem to state that 9i will unnest without

costing, when this parameter suggests that there are some cases where the cost is examined?

Perhaps it’s because semi-joins (and anti-joins) aren’t really considered to be examples of

unnesting. Perhaps it’s simply that even the MetaLink analysts have a hard time keeping up

with all the changes.

Whatever this list says to you, it tells me that it’s hard work keeping up with the new details

and features that keep appearing in the optimizer—particularly in the area of subquery trans-

formation. The whole area of subquery manipulation is one where I regularly have to remind

myself that “I’ve never seen it” isn’t the same as “it doesn’t happen.” It’s also the area where

transformed execution plans can be hardest to read (think about my hypothetical plan in the

earlier discussion on filtering, with its missing filter line).

Categorization

Before going on, we ought to do a little categorization of subqueries, just so that we have some

common understanding of the types of query that we will be looking at, and to get a broad-

brush picture of the types of subquery where the options for transformation are (currently)

restricted.

When dealing with problems of subqueries that are misbehaving, I tend to split them up

into a few mechanical areas, as shown in Table 9-2. This isn’t intended as a scientific, or even

formal, categorization; it’s just my personal way of reminding myself of the highlights of what

to expect from different types of subquery.

_distinct_view_unnesting n/a n/a false Enables unnesting of in
subquery into “select
distinct” view.

_right_outer_hash_enable n/a n/a true Enables right outer
(including semi and anti)
hash join.

_remove_aggr_subquery n/a n/a true Enables removal of
subsumed aggregate
subqueries.

Table 9-1. Parameters for Handling Subqueries Keep Changing

Name 8i 9i 10g Description

238 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

You will note, of course, that a single subquery can easily fall across several of these cate-

gories—there is nothing stopping a correlated subquery from being an aggregate, returning at

most one row for a nonexistence test. (But at least, when I see one like that, I know that I may

have to think about it very carefully if it’s not doing what I expect.)

In this volume, I’m going to stick to simple subqueries, play about a little bit with in/exists,

not in/not exists, and say a little bit about unnesting, semi-joins, and anti-joins.

So let’s go back to script filter_cost_01.sql, which started this chapter, and modify it to

allow 9i to do what it wants with our very first test case. What does the execution plan look like?

See script unnest_cost_01.sql in the online code suite.

Execution Plan (9.2.0.6 with no hints - an unnest occurs)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=100 Card=1000 Bytes=98000)

1 0 HASH JOIN (Cost=100 Card=1000 Bytes=98000)

2 1 VIEW OF 'VW_SQ_1' (Cost=64 Card=6 Bytes=156)

3 2 SORT (GROUP BY) (Cost=64 Card=6 Bytes=48)

4 3 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=160000)

5 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

Execution Plan (9.2.0.6 when we forced a FILTER)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=35035 Card=1000 Bytes=72000)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=1000 Bytes=72000)

3 1 SORT (AGGREGATE)

4 3 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=3333 Bytes=26664)

Table 9-2. A Rough Classification of Subquery Types

Category Characteristics

Correlated/
Noncorrelated

A correlated subquery references columns from an outer query block.
Correlated subqueries can often be transformed into joins; noncorrelated
subqueries have some chance of becoming driving subqueries.

Simple/Complex Simple subqueries contain just a single table. Complex subqueries
contain many tables, through either joins or subqueries of subqueries.
There are things that the optimizer can do with simple subqueries that
cannot be applied to complex subqueries.

Aggregate If a simple (single table) subquery contains some aggregation, then there
are some restrictions on how the optimizer may be able to transform them.

Single-row A subquery that returns (at most) a single row—which often means that it
can become a driving point in the query.

In/Exists in subqueries can be rewritten as exists subqueries. These can then be
transformed into semi-joins.

Not in/Not exists not in subqueries can be rewritten as not exists subqueries. With certain
restrictions, these can then be transformed into anti-joins. Critically, not
in is not the opposite of in—and null columns cause problems.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 239

The optimizer has taken our original query and rewritten it to avoid the filter. In effect, the

optimizer has executed the following statement (the no_merge hint is there just to make sure

that Oracle doesn’t decide to use some trick of complex view merging to expand the query, and

do something completely different with it):

select

 /*+ ordered use_hash(outer) */

 outer.*

from

 (

 select

 /*+ no_merge */

 dept_no,

 avg(inner.sal) avg_sal

 from emp inner

 group by

 dept_no

) inner,

 emp outer

where

 outer.dept_no = inner.dept_no

and outer.sal > inner.avg_sal

;

Note the appearance of the line view of vw_sq_1 in the execution plan. This is an indica-

tion that the optimizer has done some query unnesting. Alternative names for views you can

get as a result of unnesting are vw_nsq_1 and vw_nso_1 (with a change in the numeric bit for

complicated SQL that manages to produce more than one unnesting action).

Those of you who have read Oracle Performance Tuning 101 by Gaja Vaidyanatha et al.

(Osborne McGraw-Hill, 2001) will recall at this point that one of the authors’ suggestions for

dealing with certain types of subquery was to convert the subquery into an inline view and put

it into the body of the query. This was such a good idea that the optimizer now does it automat-

ically. It happens more or less inevitably in 9i, but is a cost-based decision in 10g.

The test case produces exactly the same final plan for 10g as it does for 9i, including the

cardinality of 1,000 rather than the 167 that 10g produced when doing a filter (so the cardinality

is still wrong with its bind variable 5%, but it is closer). However, when you look at the 10053

trace, you find that 9i has produced just two general plans sections, whereas 10g has produced

ten sections before producing a final course of action, suggesting that the decision to unnest was

driven by the cost.

The first section in the 9i trace generated the strategy for instantiating the inline aggregate

view, and the second section worked out how to join the aggregate view to the other table.

The trace file for 10g started with the same two sections, and then seemed to have a section

calculating the effect of joining the two tables before doing an aggregation (which I thought

should have been blocked by the no_merge hint), followed by various repetitions of very similar

calculations. Lurking within the later calculations were two sections relating to costing the

query using the old 8i filter option—which was more expensive than the unnesting option,

and therefore ignored (although in a secondary experiment, I changed the data so that the

filter was cheaper than the unnest, and the filter was chosen automatically).

240 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

Script unnest_cost_02.sql in the online code suite has an example where the optimizer in

10g seems to choose to unnest, even though the filter option has a lower cost. However, the

chosen path is actually reported as a semi-join rather than a simple join after unnesting, so

there may be some heuristic (i.e., rule) that blocks filters in favor of semi-joins. Examination of

the 10053 trace file shows that only one possible execution method (a join) was considered—

so there must have been a transformation applied before the option to use a filter has been

considered. Hang on to your no_unnest hint—you may need it from time to time.

The script unnest_cost_01a.sql in the online code suite shows a couple of variations on

the theme of the average salary question. The first is a noncorrelated single row subquery—

instead of checking employees with a salary greater than the average for their department, we

find the employees with a salary higher than the average for the company:

select

 outer.*

from

 emp outer

where

 outer.sal >

 (

 select

 avg(inner.sal)

 from emp inner

)

;

As usual, 8i does its filtering thing, and forgets to allow for the cost of the subquery. In fact,

it is barely possible to notice the difference between the execution plan for the original better

than average for the department query and the modified query in 8i.

Execution Plan (8.1.7.4 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=34 Card=1000 Bytes=72000)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=34 Card=1000 Bytes=72000)

3 1 SORT (AGGREGATE)

4 3 TABLE ACCESS (FULL) OF 'EMP' (Cost=34 Card=20000 Bytes=100000)

As with the filter execution for the correlated subquery we ran at the start of the chapter,

we have an execution plan that appears to say we will scan the emp table and calculate the

average once per row. The only difference between this plan and the plan for the correlated

subquery is that the cardinality for the aggregation tablescan on line 4 is 20,000 (for the full

table) rather than the 3,334 for each department reported in the first execution plan.

When we move on to 9i, we see the following changes:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=35 Card=1000 Bytes=72000)

1 0 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=1000 Bytes=72000)

2 1 SORT (AGGREGATE)

3 2 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=100000)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 241

Look very carefully at this execution plan—the indenting is critical. Working from the

bottom up, line 3 is a tablescan that feeds its result set to line 2, which sorts it for an aggregate

function—in fact, there will be no real sorting, just a running sum and count to produce the

company average. Line 2 feeds the average just once to line 1 as an unknown, but fixed, value.

So line 1 uses the 5% for a bind variable calculation to estimate that 1,000 rows out of the 20,000

will be returned by the tablescan.

Note the final cost in line 0. It’s 35, the cost of just one tablescan—which means it’s wrong.

This changes in 10g, where the plan is identical, except for a final (correct) cost of 70.

Another variation on the averages theme (unnest_cost_01a.sql still) is to introduce an

extra restriction, represented by an extra table. What if I am only interested in the results for a

particular group of departments? I might end up with a (not very sensible) query like the following:

select

 outer.*

from

 emp outer

where

 outer.dept_no in (

 select dept_no

 from dept

 where dept_group = 1

)

and

 outer.sal > (

 select avg(inner.sal)

 from emp inner

 where

 inner.dept_no = outer.dept_no

 and inner.dept_no in (

 select dept_no

 from dept

 where dept_group = 1

)

)

;

In this case, the SQL selects only the people from the departments in group 1 from the full

list of employees by using a noncorrelated subquery in both the outer query block and the

inner query block. A more sensible approach, perhaps, would have entailed using a two-table

join (assuming it was logically equivalent) in both the outer and inner query blocks.

Despite the silliness of the query, the optimizer copes well in 10g. I’ve used dbms_xplan in

this example to help identify which copies of emp and dept in the original query correspond to

which copies in the execution plan. But the help comes only from examining the predicate

information section carefully. (A column called instance in the plan_table lets you identify

multiple copies of the same table in a query very easily—unfortunately, none of the Oracle

tools report it.)

242 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 500 | 51500 | 98 |

|* 1 | HASH JOIN | | 500 | 51500 | 98 |

| 2 | VIEW | VW_SQ_1 | 6 | 156 | 59 |

| 3 | SORT GROUP BY | | 6 | 78 | 59 |

|* 4 | HASH JOIN | | 10000 | 126K| 38 |

|* 5 | TABLE ACCESS FULL| DEPT | 3 | 15 | 2 |

| 6 | TABLE ACCESS FULL| EMP | 20000 | 156K| 35 |

|* 7 | HASH JOIN | | 10000 | 751K| 38 |

|* 8 | TABLE ACCESS FULL | DEPT | 3 | 15 | 2 |

| 9 | TABLE ACCESS FULL | EMP | 20000 | 1406K| 35 |

Predicate Information (identified by operation id):

 1 - access("DEPT_NO"="OUTER"."DEPT_NO")

 filter("OUTER"."SAL">"VW_COL_1")

 4 - access("INNER"."DEPT_NO"="DEPT_NO")

 5 - filter("DEPT_GROUP"=1)

 7 - access("OUTER"."DEPT_NO"="DEPT_NO")

 8 - filter("DEPT_GROUP"=1)

Looking at this output, we can see that the optimizer has turned the outer subquery into a

simple hash join in lines 7, 8, and 9. Looking at line 2, we can see that the optimizer has also

unnested a subquery, which turns out to be our average salary subquery—and inside that

subquery, the optimizer (at lines 4, 5, and 6) has also turned our silly inner subquery construct

into a simple hash join.

Even 8i does something similar. It manages to convert both subqueries into hash joins,

although it then uses its standard filter mechanism to deal with the rest of the query.

Unfortunately, 9i does something a little surprising—possibly trying to be too clever with

the wrong dataset. This is the 9i execution plan:

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost |

--

| 0 | SELECT STATEMENT | | 833K| 71M| | 262K|

|* 1 | FILTER | | | | | |

| 2 | SORT GROUP BY | | 833K| 71M| 1687M| 262K|

|* 3 | HASH JOIN | | 16M| 1430M| | 100 |

| 4 | TABLE ACCESS FULL | EMP | 20000 | 156K| | 35 |

|* 5 | HASH JOIN | | 30000 | 2402K| | 44 |

| 6 | MERGE JOIN CARTESIAN| | 9 | 90 | | 8 |

|* 7 | TABLE ACCESS FULL | DEPT | 3 | 15 | | 2 |

| 8 | BUFFER SORT | | 3 | 15 | | 6 |

|* 9 | TABLE ACCESS FULL | DEPT | 3 | 15 | | 2 |

| 10 | TABLE ACCESS FULL | EMP | 20000 | 1406K| | 35 |

--

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 243

Predicate Information (identified by operation id):

 1 - filter("OUTER"."SAL">AVG("INNER"."SAL"))

 3 - access("INNER"."DEPT_NO"="OUTER"."DEPT_NO" AND

 "INNER"."DEPT_NO"="DEPT"."DEPT_NO")

 5 - access("OUTER"."DEPT_NO"="DEPT"."DEPT_NO")

 7 - filter("DEPT"."DEPT_GROUP"=1)

 9 - filter("DEPT"."DEPT_GROUP"=1)

I am not going to try to explain exactly what the optimizer has done here—critically, though, it

obeyed the subquery unnesting directive (parameter _unnest_subquery = true) and unnested

everything in sight, and then used complex view merging to try to find the optimum four-table

join order, postponing the calculation of average salary to the last possible moment.

Suffice it to say that on test runs, 8i and 10g managed to complete the query in the prover-

bial subsecond response time, whereas 9i took 1 minute and 22 seconds of solid CPU on a

machine running at 2.8 GHz.

When I set _unnest_subquery to false, 9i followed the 8i execution plan; when I set parameter

_complex_view_merging to false, it followed the 10g execution plan. Conversely, when I set the

10g parameter _optimizer_squ_bottomup to false, 10g generated the disastrous 9i execution

plan—even when I rewrote the query to turn the subqueries on dept to joins (and that was a

surprise that I’m going to have to investigate one day).

Semi-Joins

Let’s take a step backward from the complexity of the previous example, and focus instead on

just the requirement to list all the employees from a specific group of departments. I’d like to

write this (see script semi_01.sql in the online code suite) as follows:

Select emp.*

from emp

where emp.dept_no in (

 select dept.dept_no

 from dept

 where dept.dept_group = 1

)

;

You will appreciate (based on an intuitive understanding of how employees and depart-

ments usually work) that this is probably a silly way to write this query, and a simple join would

work better. Assuming I had designed the tables correctly—which really means insisting that

departmental codes are unique within the department table—the optimizer could come to the

same conclusion. This is the default execution plan in 9i when that critical condition is met:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=38 Card=10000 Bytes=770000)

1 0 HASH JOIN (Cost=38 Card=10000 Bytes=770000)

2 1 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=3 Bytes=15)

3 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

244 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

The optimizer managed to turn the subquery approach into a simple join approach. If I

hadn’t created the dept table with the appropriate uniqueness constraint, the optimizer would

still have managed to find the join by unnesting:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=44 Card=10000 Bytes=770000)

1 0 HASH JOIN (Cost=44 Card=10000 Bytes=770000)

2 1 SORT (UNIQUE)

3 2 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=3 Bytes=15)

4 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

In a very slight variation, 8i would have inserted one extra line to the plan, between the

hash join and the sort, identifying the inline view from the unnest as vw_nso_1. If we had then

blocked the unnesting (with the no_unnest hint), the optimizer would have fallen back to the

filter mechanism:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=47 Card=3333 Bytes=239976)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=35 Card=20000 Bytes=1440000)

3 1 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=2 Card=1 Bytes=5)

There is still one remaining option that the optimizer could play: the semi-join—a mech-

anism reserved exclusively for existence tests. Wait a moment, you say, this query doesn’t have

an existence test it has an in subquery. But an in can always be transformed into an exists, and

once it has been transformed, the optimizer may choose to use a semi-join on it—and that

semi-join could be a nested loop, merge, or hash semi-join. When hinted, these are the plans

we get from 8i and 9i:

Execution Plan (9.2.0.6 autotrace with nl_sj hint in subquery)

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=40035 Card=10000 Bytes=770000)

1 0 NESTED LOOPS (SEMI) (Cost=40035 Card=10000 Bytes=770000)

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

3 1 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=2 Bytes=10)

Execution Plan (9.2.0.6 autotrace with merge_sj hint in subquery)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=282 Card=10000 Bytes=770000)

 1 0 MERGE JOIN (SEMI) (Cost=282 Card=10000 Bytes=770000)

 2 1 SORT (JOIN) (Cost=274 Card=20000 Bytes=1440000)

 3 2 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

 4 1 SORT (UNIQUE) (Cost=8 Card=3 Bytes=15)

 5 4 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=3 Bytes=15)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 245

Execution Plan (9.2.0.6 autotrace with hash_sj hint in subquery)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=63 Card=10000 Bytes=770000)

 1 0 HASH JOIN (SEMI) (Cost=63 Card=10000 Bytes=770000)

 2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

 3 1 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=3 Bytes=15)

So what is a semi-join? If we take our subquery example about finding employees in a set

of departments, we might rewrite it as follows:

select emp.*

from

 emp,

 dept

where

 dept.dept_no = emp.dept_no

and dept.dept_group = 1

;

But there could be a logical problem with this rewrite. Unless the combination of

(dept_no, dept_group)—or at least the dept_no—is constrained to be unique across the dept

table, a simple join could produce multiple copies of each relevant emp row. If you are not very

careful as you switch between joins and subqueries, you can get wrong answers.

This is where the semi-join comes in: it deals with cases where the suitable uniqueness

constraint simply does not exist. A semi-join is like a simple join, but once a row from the outer

table has joined to one row from the inner table, no further processing is done for that outer

row. In its nested loop form, it’s like having an inner loop that always stops after one success,

thus saving resources.

Of course, as you have just seen, within the limitations of the semi-join, you can have

nested loop, merge, or hash semi-joins—but if you look carefully at the 9i version of the hash

semi-join, you will see that the join has operated the wrong way round. It has built the in-memory

hash from the larger data set, and then probed it with the smaller data set. Semi-joins and anti-

joins (like traditional outer joins) are constrained in 9i to operate in a very specific order—the

table from the subquery has to appear after the table in the main query.

However, when we move to 10g, where an enhancement to the hash join code allows an

outer hash join to operate in either direction, we find an interesting little change. The execution

plan (in fact the default execution plan in my test case) is as follows:

Execution Plan (10.1.0.4 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=38 Card=10000 Bytes=770000)

1 0 HASH JOIN (RIGHT SEMI) (Cost=38 Card=10000 Bytes=770000)

2 1 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=2 Card=3 Bytes=15)

3 1 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=35 Card=20000 Bytes=1440000)

Note the (right semi) in line one, compared to the (semi) in the 9i execution plan. Semi-

joins and anti-joins, like outer joins, are no longer constrained to operate in a specific order in

10g if they are executed as hash joins, so the smaller dataset can always be the one chosen to

246 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

build the hash table. Note also that we are back to the original cost of the hash join we had

when the dept_no was declared unique.

Anti-Joins

The semi-join can deal with exists subqueries (or in subqueries that get transformed into

exists subqueries). There is another special operation—the anti-join—that has been created

to deal with not exists (or not in) subqueries.

Given the very special piece of inside information that our departments fall into exactly

two groups, we could identify employees in department group 1 by rewriting our peculiar

query so that it selected employees who were not in department group 2 (see script anti_01.sql in

the online code suite).

select emp.*

from emp

where emp.dept_no not in (

 select dept.dept_no

 from dept

 where dept.dept_group = 2

)

;

The first thing we discover is that, no matter how we hint it, the optimizer will stubbornly

produce the following plan if either the emp.dept_no or dept.dept_no is allowed to be null.

Something is blocking any transformation if nulls are allowed (we will examine this in a minute).

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2035 Card=1000 Bytes=72000)

1 0 FILTER

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=1000 Bytes=72000)

3 1 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=1 Bytes=5)

If we want the optimizer to be clever with not in subqueries, we need to ensure that the

columns at both ends of the comparison may not be null. Of course, one way of doing this is to

add a not null constraint to the two columns—but adding a predicate dept_no is not null at

both ends of the query would also work.

Assuming that we do have the necessary not null constraints at both ends of the compar-

ison, we get the following extra execution plans from 9i (in my case the hash anti-join appeared

as the default action, the other two options had to be hinted):

Execution Plan (9.2.0.6 - with nl_aj hint in subquery)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=40035 Card=10000 Bytes=770000)

1 0 NESTED LOOPS (ANTI) (Cost=40035 Card=10000 Bytes=770000)

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

3 1 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=2 Bytes=10)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 247

Execution Plan (9.2.0.6 - with merge_aj hint in subquery)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=282 Card=10000 Bytes=770000)

1 0 MERGE JOIN (ANTI) (Cost=282 Card=10000 Bytes=770000)

2 1 SORT (JOIN) (Cost=274 Card=20000 Bytes=1440000)

3 2 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

4 1 SORT (UNIQUE) (Cost=8 Card=3 Bytes=15)

5 4 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=3 Bytes=15)

Execution Plan (9.2.0.6 - with hash_aj hint in subquery)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=63 Card=10000 Bytes=770000)

1 0 HASH JOIN (ANTI) (Cost=63 Card=10000 Bytes=770000)

2 1 TABLE ACCESS (FULL) OF 'EMP' (Cost=35 Card=20000 Bytes=1440000)

3 1 TABLE ACCESS (FULL) OF 'DEPT' (Cost=2 Card=3 Bytes=15)

And you notice once more in 9i that the hash join has been done the expensive way (hashing

the larger table). Again, 10g comes to the rescue with the following execution plan where the

table order has been reversed, and the (anti) has been replaced by (right anti):

Execution Plan (10.1.0.4 - with hash_aj hint in subquery)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=38 Card=10000 Bytes=770000)

1 0 HASH JOIN (RIGHT ANTI) (Cost=38 Card=10000 Bytes=770000)

2 1 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=2 Card=3 Bytes=15)

3 1 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=35 Card=20000 Bytes=1440000)

We can explain the anti-join by thinking how we could rewrite the not in subquery as a

join. The following query is an appropriate rewrite, and gives us the critical clue as to how the

anti-join is behaving:

select

 emp.*

from

 emp,

 dept

where

 dept.dept_no(+) = emp.dept_no

and dept.dept_group(+) = 2

and dept.dept_no is null

;

The effect of this query is to join every employee to their department if their department is

in group 2, but, because of the outer join, we also preserve every other employee row; then we

discard all rows where the join actually found a department. Consequently, what we have left

is a single copy of every employee who is not a member of a department in group 2, and (through

our human awareness of the meaning of the data) is therefore a member of a department in

group 1. Again, we have done too much work to get a result that could (in general) be wrong—

especially if there is no suitable uniqueness constraint on the dept table. The anti-join is simply

248 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

the implementation of this outer join approach, except it discards an outer row the moment it

finds a match (thus avoiding redundant joins to the inner table).

Anti-join Anomaly

In much the same way that the optimizer can transform in subqueries to exists subqueries, it

can also transform not in subqueries into not exists subqueries. But sometimes it won’t, for

no apparent reason. Compare the following two queries—given the definition of the tables (see

book_subq.sql in the online code suite) they are logically equivalent:

select book_key

from books

where NOT EXISTS (

 select null

 from sales

 where sales.book_key = books.book_key

)

;

select book_key

from books

where book_key NOT IN (

 select book_key

 from sales

)

;

In 10g the optimizer will use a hash anti-join to execute the first query. Moreover,10g will

transform the second query into the first query and do a hash anti-join on that as well.

On the other hand, 9i behaves differently—and in a totally counterintuitive way. It will

transform the second query into the first query, and execute a hash anti-join. But it won’t perform

a hash anti-join on the first query unless it is hinted (and the hash anti-join is much cheaper

than the filter operation that appears by default). You may recall in the table of optimizer

parameters earlier on that we saw a 9i parameter called _unnest_notexists_sq, with a default

value of single. Strangely, this query seems to be described perfectly by that parameter—but

the single existence subquery is not unnested.

ANTI-JOIN BUGS IN 9I

There are several bugs listed on MetaLink relating to anti-joins in 9i, typically reported as fixed in 10.2. Generally

these bugs are of the wrong results category, so be a little cautious about execution plans that report anti-

joins. It’s worth getting a list of the current bugs with their rediscovery information just in case.

The moral of this story is that the optimizer can do all sorts of clever transformations

between different ways of writing queries—so it’s a nice idea to write the query in a way that

makes sense to you as the first approach; but sometimes a transformation that you might

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 249

expect simply doesn’t happen—so sometimes you have to be prepared to write your queries in

a way that helps the optimizer along a bit.

Nulls and Not In

We still have to address the issue of nulls blocking the anti-join (and associated) transforma-

tions. There are two ways of understanding the issue. The first is the informal observation that

the anti-join is approximately equivalent to the outer join show in the previous section—but

the outer join does an equality comparison between the dept_no columns of the emp and dept

tables, and nulls always produce problems when you start comparing them in any way other

than is null or is not null.

The second, slightly more formal, approach is to note the comment in the SQL Reference

manual that

colX not in ('A', 'B', 'C')

is equivalent to

colX != 'A' and colX != 'B' and colX != 'C'

The string of ANDs means that every one of the individual conditions in the list must be

checked and must evaluate to true for the entire expression to evaluate to true. If a single

condition evaluates to false or null, then the expression is not true.

As an example of the errors that can occur if you forget this, script notin.sql in the online

code suite sets up a case with the following results:

select * from t1 where n1 = 99;

 N1 V1

---------- --------------------

 99 Ninety-nine

1 row selected.

select * from t2 where n1 = 99;

no rows selected

select *

from t1

where t1.n1 not in (

 select t2.n1 from t2

)

;

no rows selected

The first query shows that there is a row in table t1 with n1 = 99. The second query shows

that there are no corresponding rows with n1 = 99 in table t2. The last query shows that there

250 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

are no rows in table t1 that do not have a corresponding row in table t2—despite the fact that

we’ve clearly just reported one.

The problem is that there is a row in table t2 where n1 is null—as soon as this occurs, the

final query can never return any data because every row from table t1 that is tested gets to this

null row and tests the condition t1.n1 = null (which is not the same as t1.n1 is null), which

never returns true.

The solution, of course, is to include a not null predicate at both ends of the test:

select *

from t1

where t1.n1 is not null

and t1.n1 not in (

 select t2.n1 from t2

 where t2.n1 is not null

)

;

 N1 V1

---------- --------------------

 99 Ninety-nine

1 row selected.

Because of the problem of comparisons with null, the optimizer is only able to transform

the standard not in subquery if the not null predicates or constraints are in place. Otherwise,

the only possible execution plan is the filter option; moreover, the clever optimization that

we saw for the filter option is not (currently) implemented for the case where the filter is

there to deal with a not in.

This is another reason for defining database constraints. If you know that a column should

never be null, then tell the database about it, otherwise bad data (in the form of a null) may get

into that column one day, and make any existing not in subqueries suddenly return the wrong

answer for no apparent reason.

Just to complete the catalog, you might note that the (apparently opposite) expression

colX in ('A', 'B', 'C')

is equivalent to

colX = 'A' or colX = 'B' or colX = 'C'

The string of ORs means that just one of the individual tests in the list needs evaluate to

true (after which Oracle need check no further) for the entire expression to evaluate to true.

Apart from the benefit of being able to take a shortcut on the test, this does mean that the presence

of a null somewhere in the test is not a problem. This shows us that, counterintuitively, the two

operators in and not in are not exact opposites of each other.

The ordered Hint

As the optimizer becomes increasingly clever with subqueries, you may find that code that

used to work efficiently suddenly starts to misbehave because you’ve told it to! Hints—even the

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 251

simplest ones—can be very dangerous, and here’s an example showing how things can go

badly wrong (see script ordered.sql in the online code suite). It starts with a query that needed

a little bit of hinting in 8i to make the join between t1 and t3 take place in the right order:

select

 /*+ ordered push_subq */

 t1.v1

from

 t1, t3

where

 t3.n1 = t1.n1

and exists (

 select t2.id

 from t2

 where t2.n1 = 15

 and t2.id = t1.id

)

and exists (

 select t4.id

 from t4

 where t4.n1 = 15

 and t4.id = t3.id

)

;

This happens to work perfectly in 8i, with the optimizer producing the following plan:

Execution Plan (8.1.7.4)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=103 Card=1812 Bytes=45300)

 1 0 FILTER

 2 1 HASH JOIN (Cost=103 Card=1812 Bytes=45300)

 3 2 TABLE ACCESS (FULL) OF 'T1' (Cost=51 Card=1000 Bytes=16000)

 4 3 TABLE ACCESS (BY INDEX ROWID) OF 'T2' (Cost=2 Card=1 Bytes=8)

 5 4 INDEX (UNIQUE SCAN) OF 'T2_PK' (UNIQUE) (Cost=1 Card=1)

 6 2 TABLE ACCESS (FULL) OF 'T3' (Cost=51 Card=1000 Bytes=9000)

 7 1 TABLE ACCESS (BY INDEX ROWID) OF 'T4' (Cost=2 Card=1 Bytes=8)

 8 7 INDEX (UNIQUE SCAN) OF 'T4_PK' (UNIQUE) (Cost=1 Card=1)

Unfortunately, when you upgrade to 9i, the optimizer still obeys your hints—and you

haven’t put enough of them into the SQL to deal with the new, improved options that 9i uses.

Remember that query transformation takes place before the other stages of optimization.

The optimizer will unnest the two subqueries in your original statement. Unfortunately,

subquery unnesting seems to take place from the bottom up, and the resulting inline views are

inserted from the top down in your from clause. This means the table order in the transformed

query is now t4, t2, t1, t3—and then there’s that ordered hint to apply! (The push_subq hint is

ignored, because after 9i has finished its transformation, there are no outstanding subqueries

to push.) So the new execution plan—thanks to your hinting—is as follows:

252 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

Execution Plan (9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=36 Card=1 Bytes=41)

 1 0 NESTED LOOPS (Cost=36 Card=1 Bytes=41)

 2 1 NESTED LOOPS (Cost=29 Card=7 Bytes=224)

 3 2 MERGE JOIN (CARTESIAN) (Cost=22 Card=7 Bytes=112)

 4 3 SORT (UNIQUE)

 5 4 TABLE ACCESS (BY INDEX ROWID) OF 'T4' (Cost=4 Card=3 Bytes=24)

 6 5 INDEX (RANGE SCAN) OF 'T4_N1' (NON-UNIQUE) (Cost=1 Card=3)

 7 3 BUFFER (SORT) (Cost=18 Card=3 Bytes=24)

 8 7 SORT (UNIQUE)

 9 8 TABLE ACCESS (BY INDEX ROWID) OF 'T2' (Cost=4 Card=3 Bytes=24)

10 9 INDEX (RANGE SCAN) OF 'T2_N1' (NON-UNIQUE) (Cost=1 Card=3)

11 2 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=1 Card=1 Bytes=16)

12 11 INDEX (UNIQUE SCAN) OF 'T1_PK' (UNIQUE)

13 1 TABLE ACCESS (BY INDEX ROWID) OF 'T3' (Cost=1 Card=1 Bytes=9)

14 13 INDEX (UNIQUE SCAN) OF 'T3_PK' (UNIQUE)

This is not (necessarily) a good thing—note particularly the Cartesian merge join between

the two unrelated tables t2 and t4 that used to be in your subqueries. Don’t blame Oracle for

this one—you put in the hints, and hints are obeyed if they’re legal. You just didn’t put in enough

hints to future-proof your code.

Star Transformation Joins
It is worth mentioning the star transformation briefly, as this is a fantastic example of how the

optimizer can rewrite a query in a way that produces the same result set from the same set of

tables while allowing a completely different order of activity to occur. Script star_trans.sql in

the online code suite creates the following table:

create table fact1 (

 id,

 mod_23,

 mod_31,

 mod_53,

 small_vc,

 padding

)

partition by range (id) (

 partition p_0500000 values less than(500001),

 partition p_1000000 values less than(1000001),

 partition p_1500000 values less than(1500001),

 partition p_2000000 values less than(2000001)

)

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 253

as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 3000

)

select

 /*+ ordered use_nl(v2) */

 rownum id,

 20 * mod(rownum - 1, 23) mod_23,

 20 * mod(rownum - 1, 31) mod_31,

 20 * mod(rownum - 1, 53) mod_53,

 lpad(rownum - 1,20,'0') small_vc,

 rpad('x',200) padding

from

 generator v1,

 generator v2

where

 rownum <= 2000000

;

The fact1 table is range-partitioned on an ID column and includes three highly repetitive

columns. I am going to create three bitmap indexes on this table, one for each of those repetitive

columns, and then create matching dimension tables for each of them. Each dimension table

will have a primary key declared.

To make things more interesting, each dimension table is going to hold 20 times as many

distinct values as it needs for this fact1 table, and there will be an extra column (a repetitions

column) with a name like rep_nn in each dimension table that I will use in an extra predicate

when joining the dimensions to the fact1 table.

Here, for example, is a typical dimension table, and an example of the type of query you

might run:

create table dim_23

as

select

 rownum - 1 id_23,

 mod(rownum - 1,23) rep_23,

 lpad(rownum - 1,20) vc_23,

 rpad('x',2000) padding_23

from

 all_objects

where

 rownum <= 23 * 20

;

alter table dim_23 add constraint dim_23_pk primary key(id_23);

254 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

-- Collect statistics using dbms_stats here

select

 dim23.vc_23,

 dim31.vc_31,

 dim53.vc_53,

 fact1.small_vc

from

 dim_23,

 dim_31,

 dim_53,

 fact1

where

 fact1.mod_23 = dim_23.id_23

and dim_23.rep_23 = 10

/* */

and fact1.mod_31 = dim_31.id_31

and dim_31.rep_31 = 10

/* */

and fact1.mod_53 = dim_53.id_53

and dim_53.rep_53 = 10

;

There are two dramatically different strategies that the optimizer could use for this query.

One strategy will try to find an ordering of the four tables that joins each table to the next in the

most efficient way, possibly coming up with an execution plan that scans the fact1 table, and

uses nested loop joins or hash joins to each of the dimension tables in turn to eliminate the

unwanted data. For example, the optimizer may simply smash its way through all the data

doing a three-step hash join as follows:

Execution Plan (autotrace 10.1.0.4)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=10608 Card=423404 Bytes=49538268)

1 0 HASH JOIN (Cost=10608 Card=423404 Bytes=49538268)

2 1 TABLE ACCESS (FULL) OF 'DIM_23' (TABLE) (Cost=25 Card=20 Bytes=560)

3 2 HASH JOIN (Cost=10576 Card=486914 Bytes=43335346)

4 3 TABLE ACCESS (FULL) OF 'DIM_31' (TABLE) (Cost=33 Card=20 Bytes=560)

5 4 HASH JOIN (Cost=10536 Card=754717 Bytes=46037737)

6 5 TABLE ACCESS (FULL) OF 'DIM_53' (TABLE) (Cost=55 Card=20 Bytes=560)

7 6 PARTITION RANGE (ALL) (Cost=10469 Card=2000000 Bytes=66000000)

8 7 TABLE ACCESS (FULL) OF 'FACT1' (TABLE) (Cost=10469 Card=2M Bytes=66M)

This execution plan scatters the three-dimension table into memory (probably using an

area of memory of at least half the hash_area_size for each in-memory hash table if you aren’t

using the automatic workarea_size_policy feature), and then reads each partition from the

fact table in turn, probing the three hashed dimension tables before reporting (or discarding)

the fact1 row. Consequently, the cost of the query is close to the cost of performing the full

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 255

tablescan across all the partitions. (The cost of scanning and hashing the dimension tables and

the cost of the in-memory probes are likely to be negligible by comparison.)

The other strategy is to recognize that there are three bitmap indexes that could allow us

to create a very efficient access path to the very small number of rows (just 53 in the example)

that we want from the fact1 table, following which we can join the three dimension tables back

very efficiently to pick up any relevant dimension details that we needed.

In effect, the optimizer does the following rewrite on our query, with the extraordinary

feature that it uses each dimension table twice:

select

 dim23.vc_23,

 dim31.vc_31,

 dim53.vc_53,

 v1.small_vc

from

 dim_23,

 dim_31,

 dim_53,

 (

 select

 mod_23, mod_31, mod_53, small_vc

 from

 fact1

 where

 fact1.mod_23 in (select id_23 from dim_23 where dim_23.rep_23 = 10)

 and fact1.mod_23 in (select id_31 from dim_31 where dim_31.rep_31 = 10)

 and fact1.mod_53 in (select id_53 from dim_53 where dim_53.rep_53 = 10)

) v1

where

 dim_23.id_23 = v1.mod_23

and dim_31.id_31 = v1.mod_31

and dim_53.id_53 = v1.mod_53

;

So we should see one part of the execution plan doing a bitmap and of the three bitmap

indexes on the main fact table, and three subsequent joins (possibly nested loop, merge, or

hash joins) to add back the extra columns from the dimension tables. Sure enough, one of the

possible plans for this query (when the parameter star_transformation_enabled is set to

temp_disable) is as follows:

Execution Plan (autotrace 10.1.0.4)

--

SELECT STATEMENT Optimizer=ALL_ROWS (Cost=256 Card=11)

 HASH JOIN (Cost=256 Card=11)

 HASH JOIN (Cost=230 Card=13)

 HASH JOIN (Cost=174 Card=34)

 TABLE ACCESS (FULL) OF 'DIM_31' (TABLE) (Cost=33 Card=20)

 PARTITION RANGE (ALL) (Cost=139 Card=53)

256 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

+++ TABLE ACCESS (BY LOCAL INDEX ROWID) OF 'FACT1' (TABLE) (Cost=139 Card=53)

 BITMAP CONVERSION (TO ROWIDS)

 BITMAP AND

** BITMAP MERGE

** BITMAP KEY ITERATION

** BUFFER (SORT)

** TABLE ACCESS (FULL) OF 'DIM_53' (TABLE) (Cost=55 Card=20)

** BITMAP INDEX (RANGE SCAN) OF 'FACT1_53' (INDEX (BITMAP))

** BITMAP MERGE

** BITMAP KEY ITERATION

** BUFFER (SORT)

** TABLE ACCESS (FULL) OF 'DIM_23' (TABLE) (Cost=25 Card=20)

** BITMAP INDEX (RANGE SCAN) OF 'FACT1_23' (INDEX (BITMAP))

** BITMAP MERGE

** BITMAP KEY ITERATION

** BUFFER (SORT)

** TABLE ACCESS (FULL) OF 'DIM_31' (TABLE) (Cost=33 Card=20)

** BITMAP INDEX (RANGE SCAN) OF 'FACT1_31' (INDEX (BITMAP))

 TABLE ACCESS (FULL) OF 'DIM_53' (TABLE) (Cost=55 Card=20)

 TABLE ACCESS (FULL) OF 'DIM_23' (TABLE) (Cost=25 Card=20)

(Note—to fit the page width, I have eliminated the bytes=nnnnn entries from the cost

details, leaving only the cost and cardinality.)

THE STAR_TRANSFORMATION AND TEMPORARY TABLES

The parameter star_transformation_enabled can take three values: false (the default), true, and

temp_disable. When a dimension table exceeds 100 blocks, your session will create an in-memory global

temporary table to hold the filtered dimension data if you simply enable star transformations by setting the

parameter to true. This has been known to cause problems in the past, which is why the option to disable

temporary tables also exists.

The limit of 100 blocks is controlled by the hidden parameter _temp_tran_block_threshold, and

the absolute value is independent of the block size of the tablespaces that your dimension tables are in. This

is another reason to be cautious about moving objects to tablespaces of different block sizes. Change a dimension

table from one block size to another, and you’ve changed the number of blocks—so the optimizer may change

from using a global temporary table to using the base table (or vice versa) for no apparent reason, and the

effect may not be beneficial.

I have broken the plan down a little bit to make it easier to see critical operations. Note

how the lines marked with the double-asterisk, **, are just three copies of the same structure—

the method of deciding how each dimension table identifies sections of the corresponding

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 257

bitmap on the fact1 table. We scan each dimension table in turn to pick up the primary key

values—the primary key values (when sorted) allow us to walk along the corresponding bitmap

index of the fact table, picking up the relevant bitmap sections and merging them into a single

bitstream. After we have done this for all three dimensions, we have three bitstreams that we

can apply the bitmap and operation to, converting any resulting bits to their corresponding rowid.

The line marked with the +++ is particularly important. In this line, the optimizer tells us

how many relevant rows it thinks there are in the fact table: card = 53 (which happens to be

correct thanks to the rather contrived way that I constructed the data). Compare this with the

cardinality reported from the brutal hash join: card = 423404. The difference is quite signifi-

cant. In fact, the divergence gets worse, because the final cardinality reported for the complete

query is only 11 according to the star transformation plan. The discrepancy arises from two

distinct factors.

• First, there seems to be a bug in the code that handles the bitmap and portion of the plan.

The reason for the strange names of the dimensions is that I had 23, 31, and 53 distinct

values of each column appearing in the fact1 table (plus a lot of other values in the

dimension tables to pad them up a bit). The predicates I had on the dimension tables

selected 20 rows each, so in theory they should have selected 20 sections from each of

the bitmaps on the fact table. However, the optimizer’s arithmetic is based on the abso-

lute selectivity of the bitmap indexes, and doesn’t allow for the actual number of bitmap

sections identified by each of the dimension tables. I had 2,000,000 rows in the fact table,

and the selectivities of my three bitmap indexes were 23, 31, and 53, respectively, so the

optimizer calculated the cardinality of the bitmap access step as 2,000,000 / (23 * 31 * 53)

= 52.925. This happens to be the correct answer in my example, but only because I had

rigged my dimension tables so that 19 of the 20 values that I had chosen would not appear in

the fact table.

• The second factor that comes into play arises from the fact that star transformations

obey normal join arithmetic. After using the bitmap and mechanism to identify the

starting set in the fact1 table, the optimizer simply applied the standard join arithmetic

to the task of joining back the three dimension tables. And that’s highly questionable, of

course, because we’ve already done that arithmetic once to derive the starting number

of rows—every row we join back is doing the join to extend the row length, and there is

no question of rows being eliminated or multiplied by the second join pass. Star trans-

formations get the wrong cardinality because they apply join selectivities twice!

We don’t even have to know how the join arithmetic works to see this second factor in

action; we can just use ratios (horror, shock, gasp) to prove the point. In the first execution plan

(without the star transformation), I started with 2,000,000 rows, and after three joins the cardi-

nality was down to 423,404—a factor of 4.7236. In the execution plan for the star join, I have an

estimated 53 rows as the starting cardinality after the bitmap and before doing the joins back to

the dimensions. Divide this by the same 4.7236, and you get 11.2—and the final cardinality

after the joins is 11.

If you check the 10053 trace file when you have enabled star transformations, you will find

that there are several sections of general plans. The first is the normal (no-transformation)

plan, followed by separate plans for each of the dimension tables in turn (each with its own

join order[1]), and finally this heading:

258 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

STAR TRANSFORMATION PLANS

After this, you get the first of the join orders (again starting with join order[1]) for the

join-back. The strange thing about it, though, is that there are no clues in the trace file about

the arithmetic that has been used to determine the cardinality of the target data set in the fact

table. All you get is a sudden appearance of an assumed cardinality (the 53 rows in my

example) with no justification.

Just as a closing thought on star transformations, you might like to wonder why I used

such an odd data pattern to demonstrate the effects it can have. First, of course, I wanted to

make the divergence in the calculations, and its cause, very obvious. Second, the construction

mimics a fairly common design error—many people put lots of little dimensions into a single

table with a type column.

If you adopt this strategy, then a single column in the fact table corresponds to a subset of

the available values in the dimension table, and the peculiar selectivity of the type column

results in the optimizer exaggerating the difference between the cardinality of the ordinary join

and the star transformation join. My predicate rep_23 = 10 might be your predicate ref_type

= 'COUNTRY CODE'.

Star Joins
For the sake of completeness, I will mention star joins very briefly. They don’t really belong in

this chapter, as there is no rewrite or transformation involved in a star join. However, people

sometimes confuse star transformations and star joins, so it’s worth mentioning them at the

same time to eliminate the confusion.

A star join is simply a special case of evaluating a join order that takes advantage of a multi-

column index on the fact table to drive a query through a Cartesian join of its dimension tables.

There are probably some special circumstances where this could be useful, but I have yet to see

a production example where it was appropriate to take advantage of the feature. (Of course,

you have to remember that the star join was made available in Oracle 7, before the implemen-

tation of the star transformation—so it may simply be an example of outdated technology.)

The script star_join.sql in the online code suite has a simple example (with no data) to

show this in action. We have a fact table with the following definition:

create table fact_tab (

 id1 number not null,

 id2 number not null,

 id3 number not null,

 small_vc varchar2(10),

 padding varchar2(100),

 constraint f_pk primary key (id1,id2,id3)

);

The three IDn columns correspond to the unique ID columns of three separate dimension

tables. When we run a query such as the following:

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 259

select

 /*+ star */

 d1.p1, d2.p2, d3.p3,

 f.small_vc

from

 dim1 d1,

 dim2 d2,

 dim3 d3,

 fact_tab f

where

 d1.v1 = 'abc'

and d2.v2 = 'def'

and d3.v3 = 'ghi'

and f.id1 = d1.id

and f.id2 = d2.id

and f.id3 = d3.id

;

we get an execution plan like this one:

Execution Plan (autotrace 9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=6 Card=1 Bytes=127)

 1 0 NESTED LOOPS (Cost=6 Card=1 Bytes=127)

 2 1 MERGE JOIN (CARTESIAN) (Cost=6 Card=1 Bytes=81)

 3 2 MERGE JOIN (CARTESIAN) (Cost=4 Card=1 Bytes=54)

 4 3 TABLE ACCESS (FULL) OF 'DIM1' (Cost=2 Card=1 Bytes=27)

 5 3 BUFFER (SORT) (Cost=2 Card=1 Bytes=27)

 6 5 TABLE ACCESS (FULL) OF 'DIM2' (Cost=2 Card=1 Bytes=27)

 7 2 BUFFER (SORT) (Cost=4 Card=1 Bytes=27)

 8 7 TABLE ACCESS (FULL) OF 'DIM3' (Cost=2 Card=1 Bytes=27)

 9 1 TABLE ACCESS (BY INDEX ROWID) OF 'FACT_TAB'

10 9 INDEX (UNIQUE SCAN) OF 'F_PK' (UNIQUE)

As you can see from lines 2 through 8, we have a Cartesian merge join between the three

dimension tables, followed (in lines 1, 9, and 10) by a unique index scan of the primary key

index to get to the fact table. It is worth pointing out that in this particular example (which actually

contained no data), the optimizer found this path without the assistance of the star hint.

There was an important lesson in the 10053 trace files for this test: in the absence of a star

hint, the 9i trace file showed 24 join orders being investigated (4 * 3 * 2 * 1 = 24, so this was the

fullest possible list)—and the plan printed previously happened to come from the first join

order examined. With the hint in place, the usual general plans section of the trace file was

missing, and instead we had a section labeled

STAR PLANS

260 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

This was followed by just six plans (3 * 2 * 1) that all had the fact_tab in the last position—

in other words, the optimizer only tried to find an execution plan that was a proper star join,

and didn’t consider any others. The star hint doesn’t help the optimizer to find that star join

execution plan; it stops the optimizer from wasting time on other options. Hints, generally, are

designed to limit the actions of the optimizer, and the star hint demonstrates this very clearly.

As a little follow-up, I also created a test case with seven dimension tables. Interestingly,

when hinted with the star hint, the optimizer examined all 5,040 possible join orders—ignoring

the fact that the parameter _optimizer_max_permutations was set to 2,000.

In the absence of the star hint, 9i examined 10 join orders under the heading general

plans, one join order under the head star plans (8i did all 5,040 at this point), and four join

orders under the heading additional plans. It seems the star hint allows the optimizer to

bypass the normal short-circuit code that makes a trade-off between the extra time required to

check more join orders and the risk of missing a better execution plan. Mind you, the optimizer

managed to get through all 5,040 join orders in 0.27 seconds (they were all simple join orders

with no extra options for indexed access paths, and it was a 2.8 GHz CPU).

The Future
Sometimes, you can see where Oracle is going by looking at hidden parameters and undocu-

mented functions. This section describes a couple of features that you should not use on a

production system—but you might like to know about them so that you can understand what’s

happening when they hit you in a future release.

There could be many ways in SQL to specify a single query, and as time passes the optimizer

is enhanced to find new ways to convert safely and efficiently between texts that are structured

very differently but produce the same result. Consider the following query (see intersect_join.sql

in the online code suite):

select n2 from t1 where n1 < 3

intersect

select n2 from t2 where n1 < 2

;

In principle, provided you deal with the problems of checking equality between null

columns, you could rewrite this as follows:

select distinct t1.n2

from t1, t2

where t1.n1 < 3

and t2.n1 < 2

and t2.n2 = t1.n2

;

Fortunately, the problem of comparing nulls can be solved (at least internally) with the

undocumented function sys_op_map_nonnull(), which seems to return a value that is deemed

to be of the type that matches its input parameter even though it is a value that is not normally

considered to be legal for that type (typically a single 0xFF).

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 261

In the preceding example, we need only change the last predicate to sys_op_map_

nonnull(t2.n2) = sys_op_map_nonnull(t1.n2) to make the second form of the query a valid

rewrite of the first query.

Check the execution plan for the first query, and you get

Execution Plan (10.1.0.4 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=30 Card=30 Bytes=600)

1 0 INTERSECTION

2 1 SORT (UNIQUE) (Cost=10 Card=45 Bytes=360)

3 2 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (TABLE) (Cost=4 Card=45 Bytes=360)

4 3 INDEX (RANGE SCAN) OF 'T1_I1' (INDEX) (Cost=2 Card=45)

5 1 SORT (UNIQUE) (Cost=20 Card=30 Bytes=240)

6 5 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=14 Card=30 Bytes=240)

But set the hidden parameter _convert_set_to_join to true (this is a 10g parameter only),

and the plan changes to

Execution Plan (10.1.0.4 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=25 Card=33 Bytes=528)

1 0 SORT (UNIQUE) (Cost=25 Card=33 Bytes=528)

2 1 HASH JOIN (Cost=19 Card=33 Bytes=528)

3 2 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=14 Card=30 Bytes=240)

4 2 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (TABLE) (Cost=4 Card=45 Bytes=360)

5 4 INDEX (RANGE SCAN) OF 'T1_I1' (INDEX) (Cost=2 Card=45)

The hash join execution plan is exactly what you get if you rewrite the query manually

from the intersection form to the join form. And if you run a full execution plan report against

the plan table, you will find that the access_predicates on the hash join is, indeed

sys_op_map_nonnull("t2"."n2") = sys_op_map_nonnull("t1"."n2")

With this new parameter set, the optimizer can also transform queries using the minus set

operator into queries using anti-joins. The transformation effectively changes the first query

that follows into the second query—and aren’t you glad you won’t have to do it by hand in the

future, as it’s too easy to make mistakes with this type of rewrite.

select n2 from t1 where n1 < 3

minus

select n2 from t2 where n1 < 2

;

select distinct n2

from t1

where n1 < 3

262 C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N

and not exists (

 select null

 from t2

 where n1 < 2

 and sys_op_map_nonnull(t2.n2) = sys_op_map_nonnull(t1.n2)

)

;

Summary
Before doing any arithmetic, the optimizer may rewrite your query in a form that is easier to

model and potentially has more optimization options available. Sometimes it is better to block

the rewrite, and there are hints available to allow you to do this. Increasingly, though, the opti-

mizer will run cost calculations for the original query and the restructured query, so in theory

such blocking activity should become unnecessary. (I understand that in 10g release 2, all

transformations are driven by cost—this is generally a good thing, but you may find that some

complex queries may now take longer to optimize.)

There are cases where the execution plan cannot adequately describe exactly what the

execution engine is going to do. Moreover, the work that has to be done by the run-time engine

may vary dramatically because of minor differences in the target data set, so a plan that seems to

work well on even a carefully generated test set of data may behave very badly on production data.

The optimizer’s ability to transform queries can be seriously affected by the presence (or

usually absence) of not null constraints. Make sure that if a column is mandatory, it is declared

as such to the database.

Similarly, the presence, or absence, of uniqueness constraints can make a difference to the

legal options and table ordering when the optimizer is trying to transform subqueries.

In general, if you are going to write SQL with subqueries, you might as well start by writing

code that reads like the natural language version of a problem, as this may be the easiest for

other people to understand. Generally, the optimizer can transform such queries into more

efficient representations. Sometimes, though, you will find that an “obvious” transformation

will not take place, and you will have to do a manual transformation of your code. If you do,

make sure that it is logically the same as the original.

Star transformations are a popular join strategy for data warehouses. But it is possible that

when you enable the feature, some of your execution plans may show dramatic changes in

cardinality. This may be due to a collision between your design strategy for dimension tables

and the arithmetic the optimizer does for the driving bitmap and.

Every time you upgrade, even on a point release, there may be a couple of new transforma-

tions that have been enabled. Usually this means that the optimizer can find a better way of

operating a query efficiently—occasionally a new transformation may be a bad idea for your

specific data set. If the performance of a critical query changes dramatically (for better or worse) on

an upgrade, make sure you can check the old execution plan against the new execution plan—

there may be a new transformation option that you need to know about.

C H A P T E R 9 ■ Q U E R Y T R A N S F O R M A T I O N 263

Test Cases
The files in the download for this chapter are shown in Table 9-3.

Table 9-3. Chapter 9 Test Cases

Script Comment

filter_cost_01.sql Example of forcing a filter subquery path

push_subq.sql Example of pushing subqueries (8.1 only)

ord_pred.sql Demonstration of the ordered_predicates hint

filter_cost_02.sql Subquery filter going faster with sorted driving table

filter_cost_01a.sql How bad luck can affect the performance of a filtered subquery

scalar_sub_01.sql Uses an inline scalar subquery instead of a traditional correlated subquery

scalar_sub_02.sql Uses a scalar subquery to fake “determinism” in function calls

scalar_sub_03.sql Uses a scalar subquery to investigate the hash table

with_subq_01.sql Simple example of scalar subqueries used to generate large data sets

with_subq_02.sql More complex example of using scalar subqueries to simplify problems.

view_merge_01.sql Demonstration of changes due to complex_view_merging

push_pred.sql Demonstration of pushing join predicates

unnest_cost_01.sql The first filter example, with the SQL written with a manual unnest

unnest_cost_02.sql A filter that looks as if it should take place (in 10g) but doesn’t

unnest_cost_01a.sql As unnest_cost_01.sql, with modifications in which averages are required

semi_01.sql Examples leading up to the semi-join

anti_01.sql Examples leading up to the anti-join

book_subq.sql Example of an anomaly where not in does something that not exists cannot

notin.sql Highlights the problem of nulls and not in subqueries

ordered.sql Example of how the ordered hint can cause problems on upgrade

star_trans.sql Example of a star transformation

star_join.sql Simple demonstration of a star join (not star transformation)

intersect_join.sql Demonstration of how 10g can convert a set operation to a join (or anti-join)

setenv.sql Sets a standardized environment for SQL*Plus

265

■ ■ ■

C H A P T E R 1 0

Join Cardinality

What is the maximum number of tables that Oracle can join at once? You may be surprised

to learn that the answer is two. It doesn’t matter how many tables you have in your query,

Oracle will only work on two objects at a time in a join. In fact, you could even argue that the

optimizer doesn’t have a long-term strategy for joins, it simply takes what it’s got at any one

point and joins on the next available table to see what happens.

Of course, this description is a little fanciful—but it’s not far from the truth. To perform a

five-table join, the optimizer picks a starting table and joins on one table; it takes the interme-

diate result and joins on one more table; it takes the intermediate result ... and so on, until all

five tables have been used; so it is perfectly true that Oracle can only join two tables.

But there is a strategy—which is to make a sensible first guess at a good join order, and

then work methodically through a series of permutations of that join order in a way that tries to

minimize the risk of wasting time on really bad join orders while maximizing the chance of

finding a better join order.

There are three things to consider with joins: how the optimizer calculates the join cardi-

nality, how the optimizer calculates the join cost, and how the execution of each type of join is

actually done.

In this chapter, we will focus only on the calculation of cardinality.

Basic Join Cardinality
Oracle Corp. published a pair of formulae for join cardinality in MetaLink note 68992.1 dated

March 1999 and last updated (as of time of writing) in April 2004. The latest incarnation of the

formula for the selectivity of a join is as follows:

Sel = 1 / max[(NDV(t1.c1), NDV(t2.c2)] *

 ((card t1 - # t1.c1 NULLS) / card t1) *

 ((card t2 - # t2.c2 NULLS) / card t2))

with the join cardinality then given as

Card (Pj) = card(t1) * card(t1) * sel(Pj)

These formulae aren’t completely consistent in style and need a little translation—in

particular, the expression card t1 that appears in the selectivity formula does not mean the

same thing as the card(t1) that appears in the cardinality formula. To clarify the meaning,

I have rewritten the formulae as follows:

266 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Join Selectivity =

 ((num_rows(t1) - num_nulls(t1.c1)) / num_rows(t1)) *

 ((num_rows(t2) - num_nulls(t2.c2)) / num_rows(t2)) /

 greater(num_distinct(t1.c1), num_distinct(t2.c2))

Join Cardinality =

 Join Selectivity *

 filtered cardinality(t1) * filtered cardinality(t2)

To translate: assume we are joining tables t1 and t2 on columns c1 and c2, respectively.

We check user_tables for the num_rows in each of the two tables and check view user_tab_

col_statistics for the num_nulls and num_distinct for the two columns, and slot these values

into the formula for join selectivity. (Later you will see that there is a variation of the formula

that uses the density rather than the num_distinct.)

The join cardinality, however, includes the filtered cardinality of each table. Remember

that a general SQL statement may have some predicates other than the join predicates. These

extra filter predicates are the ones that should be applied to the tables first to derive the filtered

cardinality—and it is possible that some of the join predicates may also function as filter

predicates.

The easiest way to explain the formula is through an example. The following is an extract

from the script join_card_01.sql in the online code suite. As usual, my demonstration envi-

ronment starts with an 8KB block size and 1MB extents, locally managed tablespaces, manual

segment space management, and system statistics (CPU costing) disabled.

create table t1 as

select

 trunc(dbms_random.value(0, 25)) filter,

 trunc(dbms_random.value(0, 30)) join1,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where rownum <= 10000

;

create table t2 as

select

 trunc(dbms_random.value(0, 50)) filter,

 trunc(dbms_random.value(0, 40)) join1,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where rownum <= 10000

;

-- Collect statistics using dbms_stats here

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 267

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t1.filter = 1

and t2.join1 = t1.join1

and t2.filter = 1

;

In all the test cases in this chapter, I have used the dbms_random.value() procedure to

generate randomized but predictable data, using the (low, high) parameters and truncating

the result to control the number of distinct values that will appear in the various filter and join

columns. In this example, we have the following:

t1.filter 25 values

t2.filter 50 values

t1.join1 30 values

t2.join1 40 values.

The filter columns are the easy step—given that both tables hold 10,000 rows, the filtered

cardinality of t1 will be 400 (10,000 rows divided by 25 distinct values), and the filtered cardinality

of t2 will be 200 (10,000 rows divided by 50 distinct values).

Since there are no null values in either table, the formulae for join cardinality give us the

following:

Join Selectivity =

 (10,000 - 0) / 10,000) *

 (10,000 - 0) / 10,000) /

 greater(30, 40) =

 1/40

Join Cardinality = 1/40 * (400 * 200) = 2000

Sure enough, when we run the query through autotrace, we see the following plan:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=57 Card=2000 Bytes=68000)

 1 0 HASH JOIN (Cost=57 Card=2000 Bytes=68000)

 2 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=200 Bytes=3400)

 3 2 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=400 Bytes=6800)

This shows the filtered cardinality of table t1 as 400, the filtered cardinality of t2 as 200,

and the cardinality of the join as 2,000, as we predicted. The formulae seem to work.

We can complicate the test (see join_card_02.sql in the online code suite) by making

every 20th row of t1 hold a null value for its join column, and every 30th row of t2 hold a null

for its join column:

268 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

update t1 set join1 = null

where mod(to_number(v1),20) = 0;

-- 500 rows updated

update t2 set join1 = null

where mod(to_number(v1),30) = 0;

-- 333 rows updated

With this change to the data (and after collecting statistics), we just have one more detail

to include in the join selectivity:

Join Selectivity =

 (10,000 - 500) / 10,000) *

 (10,000 - 333) / 10,000) /

 greater(30, 40) =

 0.022959125

Join Cardinality = 400 * 200 * 0.022959125 = 1,836.73

And again, we see that the cardinality predicted by the formula matches the cardinality of

1,837 reported by autotrace.

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=57 Card=1837 Bytes=62458)

 1 0 HASH JOIN (Cost=57 Card=1837 Bytes=62458)

 2 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=200 Bytes=3400)

 3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=400 Bytes=6800)

As a final complication, we can introduce some null values to the filter columns (see

join_card_03.sql in the online code suite) as well as the nulls we put into the join columns.

The following code introduces 200 nulls to the filter column in table t1, and 100 nulls to table t2:

update t1 set filter = null

where mod(to_number(v1),50) = 0;

-- 200 rows updated

update t2 set filter = null

where mod(to_number(v1),100) = 0;

-- 100 rows updated

We already have a join selectivity of 0.22959125 from our previous example, so all we have

to do is work out the filtered cardinality of each of the tables when the columns with the filter

predicates have some nulls. But I showed you how to do that in Chapter 3. The formula is

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 269

Adjusted (computed) Cardinality = Base Selectivity * (num_rows - num_nulls)

• For table t1 we have 1/25 * (10,000 – 200) = 392.

• For table t2 we have 1/50 * (10,000 – 100) = 198.

Putting these values into the formula for join cardinality, we get

Join Cardinality = 392 * 198 * 0.022959125 = 1,781.995

Compare this with the autotrace output, noting also the cardinality for each of the sepa-

rate tablescans:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=57 Card=1782 Bytes=60588)

 1 0 HASH JOIN (Cost=57 Card=1782 Bytes=60588)

 2 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=198 Bytes=3366)

 3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=392 Bytes=6664)

So the formulae seem to work—at least, for very simple cases. (Strangely, the 8i calcula-

tions go slightly wrong, with a cardinality of 199 rather than 198 on table t2, leading to a join

cardinality of 1791. This is probably just an example of simple computational error—dividing

by 5 is a common cause of errors in the Nth decimal place.)

Unfortunately there are problems that still need addressing—lots of them. Let’s try to find

a few questions about the limitations of the formulae.

• What are you supposed to do if you have two or more join columns?

• What do you do about a join condition that includes a range scan?

• How do you join a third table?

• Why doesn’t the formula seem to allow for cases where the ranges of the join columns

only have a partial overlap?

• Do histograms have any effect?

With a little patience and experimentation, we can find the answers to some of these

questions. As usual, it turns out that the code contains many rational strategies, some decisions

that don’t seem entirely reasonable, some special cases, and some things that look like bugs.

Biased Joins

Let’s finish this section with just one very simple case where the optimizer “breaks” the rules—

or rather, uses a rule we didn’t know about. Let’s go all the way back to the simplicity of our first

example (no nulls, simple equality), but produce a test that applies a filter to just one of the two

tables in the join (see script join_card_01a.sql in the online code suite):

270 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

create table t1 as

select

 trunc(dbms_random.value(0, 100)) filter,

 trunc(dbms_random.value(0, 30)) join1,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where rownum <= 1000

;

create table t2 as

select

 trunc(dbms_random.value(0, 100)) filter,

 trunc(dbms_random.value(0, 40)) join1,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where rownum <= 1000

;

-- Collect statistics using dbms_stats here

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t2.join1 = t1.join1

-- and t1.filter = 1

and t2.filter = 1

;

In this test, I have 10,000 rows in each table, and a filter column with 100 distinct values.

The query shown filters only on table t2 and has the filter on table t1 commented out, but the

complete script for the test case has a second query that filters only t1, commenting out the

filter on t2. There are 30 distinct values in the join column for t1 and 40 for t2.

If you check the selectivity formula, it shouldn’t really matter which table has the filter

condition on it; the selectivity is only looking at the num_distinct on the join columns:

Join Selectivity =

 ((num_rows(t1) - num_nulls(t1.c1)) / num_rows(t1)) *

 ((num_rows(t2) - num_nulls(t2.c2)) / num_rows(t2)) /

 greater(num_distinct(t1.c1), num_distinct(t2.c2))

in this case:

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 271

Join Selectivity =

 (1000 / 1000) * (1000 / 1000) / greater(30, 40) =

 1/40 =

 0.025

Since the filter condition is the same (one value in 100) on each of the tables, the join cardi-

nality is going to come out the same, whichever table has the filter applied:

Join Cardinality =

 Join Selectivity *

 filtered cardinality(t1) * filtered cardinality(t2) =

 0.025 * 10 * 1000 =

 250

So here are the two execution plans:

Execution Plan (9.2.0.6 Filter on just T1)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=11 Card=250 Bytes=7750)

 1 0 HASH JOIN (Cost=11 Card=250 Bytes=7750)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=5 Card=10 Bytes=170)

 3 1 TABLE ACCESS (FULL) OF 'T2' (Cost=5 Card=1000 Bytes=14000)

Execution Plan (9.2.0.6 Filter on just T2)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=11 Card=333 Bytes=10323)

 1 0 HASH JOIN (Cost=11 Card=333 Bytes=10323)

 2 1 TABLE ACCESS (FULL) OF 'T2' (Cost=5 Card=10 Bytes=170)

 3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=5 Card=1000 Bytes=14000)

Change the filter table, and you change the cardinality of the result. Filtering on table t1,

we get a cardinality of 250, as we inferred from the formula. Filter on table t2, and the cardinality

changes to 333. Can you guess where that came from? Is it a coincidence that 1,000 / 30 = 333?

One simple variation on the join cost algorithm appears when there is a filter predicate at

just one end of the join—we may use the num_distinct values from the table at the other end of

the join, not the greater of the two num_distinct. (And I suspect that this statement is probably

just a very special case of a more general rule about how filter predicates may affect the way

that the optimizer decides which table to use as the source of num_distinct.)

When we have a filter only on t2, we use the num_distinct of 30 from table t1, rather than

the larger num_distinct of 40 required by the standard formula.

Join Cardinality for Real SQL
Unless your system has been cursed with single-column synthetic keys all over the place, you

will probably write some SQL that involves two, or more, columns being used in the join condi-

tion between two tables. So how do you extend the basic formula to deal with multicolumn

joins? The strategy is exactly the same one you would use for multiple predicates on a single

table—just apply the formula once for each predicate in turn and multiply up to derive the final

join selectivity. (And then wait for the trap that 10g introduces with its sanity checks.)

272 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Consider the following extract (see join_card_04.sql in the online code suite):

create table t1 as

select

 trunc(dbms_random.value(0, 30)) join1,

 trunc(dbms_random.value(0, 50)) join2,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where rownum <= 10000

;

create table t2 as

select

 trunc(dbms_random.value(0, 40)) join1,

 trunc(dbms_random.value(0, 40)) join2,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where rownum <= 10000

;

-- Collect statistics using dbms_stats here

select t1.v1, t2.v1

from

 t1,

 t2

where

 t2.join1 = t1.join1

and t2.join2 = t1.join2

;

When we run this through autotrace (and 9i and 8i should produce the same cardinality,

though the costs may differ), we get the following:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=60 Card=50000 Bytes=1700000)

 1 0 HASH JOIN (Cost=60 Card=50000 Bytes=1700000)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=10000 Bytes=170000)

 3 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=10000 Bytes=170000)

The cardinalities on t1 and t2 are clearly correct; we haven’t filtered out any rows on the

tablescans. Consequently, our join cardinality of 50,000 must come from 100,000,000 (i.e.,

10,000 * 10,000) times a join selectivity of 1/2,000—but where in our data definitions can we

find that “magic” 2,000?

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 273

If we think about applying the selectivity formula twice, we’ll soon spot it. The critical

component in our case is the bit that goes

greater(num_distinct(t1.c1), num_distinct(t2.c2))

We have two join components, t1.join1 = t2.join1 and t1.join2 = t2.join2. In Chapter 3

you learned that you combine selectivities on single tables by multiplying them together (at

least, that’s what you do when the individual predicates have an and between them). You do

exactly the same with the join selectivities:

Join Selectivity =

 {join1 bit} *

 {join2 bit} =

 (10,000 - 0) / 10,000) *

 (10,000 - 0) / 10,000) /

 greater(30, 40) * -- uses the t2 selectivity (1/40)

 (10,000 - 0) / 10,000) *

 (10,000 - 0) / 10,000) /

 greater(50, 40) = -- uses the t1 selectivity (1/50)

 1/40 * 1/50 =

 1/2000 (as required)

So all we’ve done is examine each part of the join in turn, and use the most selective value

in each case—even if it means the selectivity comes from a different table at each step of the

calculation.

■Note You may have come across an old bug where the optimizer would fail to notice repeated predicates

(for example, add an extra t2.join2 = t1.join2 to the preceding query, and the cardinality would come

out at 1,000 instead of 50,000 because the optimizer had done the arithmetic for the join2 columns twice).

Various aspects of this problem have been dealt with in 9i.

Then, just as you think you’re getting the hang of how things work, you run the test on 10g

and the autotrace output comes up with a different answer:

Execution Plan (10.1.0.4 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=60 Card=62500 Bytes=2125000)

 1 0 HASH JOIN (Cost=60 Card=62500 Bytes=2125000)

 2 1 TABLE ACCESS (FULL) OF 'T1' (TABLE) (Cost=28 Card=10000 Bytes=170000)

 3 1 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=28 Card=10000 Bytes=170000)

How did the computed cardinality of 50,000 in the 9i plan change into the 62,500 in the

preceding execution plan? If you’re really good at mental arithmetic, you may be able to guess

274 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

the answer really quickly—that’s one reason why it’s good to make sure you construct experi-

ments where nice, easy numbers are likely to drop out. When in difficulty, I often try working

backwards—in this case, from the join cardinality to the join selectivity:

62,500 = 100,000,000 * join selectivity.

Join selectivity = 62,500 / 100,000,000 = 1/1,600

Can we find 1,600 anywhere in our test case? Yes we can: 1/1,600 = 1/40 * 1/40.

The optimizer has used two selectivities from the same side of the join instead of one from

each side. In fact, we can see this confirmed in the 10053 trace file. There are two indicators.

Following the single table access path section, we see

Table: T1 Multi-column join key card: 1500.000000

Table: T2 Multi-column join key card: 1600.000000

In fact, if you also have multicolumn indexes that might be relevant, this part of the trace

file also reports the number of distinct keys in these indexes with the description Concatenated

index card.

At the tail end of the NL Join section (where the join cardinality is worked out), we then see

the following:

Using multi-column join key sanity check for table T2

Revised join selectivity: 6.2500e-004 = 5.0000e-004 * (1/1600) * (1/5.0000e-004)

Join Card: 62500.00 = outer (10000.00) * inner (10000.00) * sel (6.2500e-004)

Again, with suitable multicolumn indexes in place, the first of these lines might refer to the

concatenated index cardinality for table t2. It is an interesting thought that you may choose

to add a column to an index in order to make some queries index-only. A side effect of this is

that this 10g sanity check will then cease to be used for any joins that might involve just the

columns from the original index definition.

As far as I can tell, this substitution always takes place (at least on nice, easy two-table

joins). The optimizer works out (perhaps for historical reasons only) the worst case selectivity

by taking the greater of the two num_distinct values for each pair of joined columns in turn.

Then it works the equivalent figure for each table in turn by looking only at the values for

num_distinct on that table, and actually uses whichever table-based figure gives the smaller

value for selectivity. (In this case, 1/1,600 is smaller than 1/1,500.) The parameter _optimizer_

join_sel_sanity_check is probably the one that controls this behavior.

As a final wrinkle, if the multi-column join key cardinality for an individual table goes

below 1/num_rows for that table, then the optimizer appears to substitute 1/num_rows instead of

the calculated value.

Extensions and Anomalies
Given our understanding of the basic calculation for well-behaved queries and nice data, we

can now move on to some of the many variations on a theme that can appear.

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 275

Joins by Range

One special case that we haven’t examined yet is what the optimizer does about joins that are

range-based joins. The answer is simple: the optimizer uses a predetermined fixed value as the

selectivity of this join predicate—just as it did with single tables and bind variables.

For example, rerun script join_card_01.sql, but change the single join predicate from

t2.join1 = t1.join1

to

t2.join1 > t1.join1

The autotrace output shows that the cardinality has changed from 2,000 to 4,000. The

selectivity of 1/40 (from the t2.join1 end of the join) has been replaced by a flat 5% (1/20). You

might note, in passing, that the join mechanism has switched from a hash join to a merge join.

Hash joins can work only for equalities; they cannot be used for range-based joins.

Execution Plan (autotrace 9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=68 Card=4000 Bytes=136000)

 1 0 MERGE JOIN (Cost=68 Card=4000 Bytes=136000)

 2 1 SORT (JOIN) (Cost=34 Card=200 Bytes=3400)

 3 2 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=200 Bytes=3400)

 4 1 SORT (JOIN) (Cost=35 Card=400 Bytes=6800)

 5 4 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=400 Bytes=6800)

Now change the predicate to

t2.join1 between t1.join1 - 1 and t1.join1 + 1

and the join cardinality changes to 200. Remember that the optimizer treats between :bind1

and :bind2 as a pair of independent predicates and multiplies 1/20 by 1/20 to get a selectivity

of 1/400 (0.025%). It has done exactly the same here.

The selectivity of the join has changed from the original 1/40 to 1/400, so the cardinality

has dropped by the same factor of 10 from 2,000 to 200.

Execution Plan (autotrace 9.2.0.6)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=68 Card=200 Bytes=6800)

 1 0 MERGE JOIN (Cost=68 Card=200 Bytes=6800)

 2 1 SORT (JOIN) (Cost=34 Card=200 Bytes=3400)

 3 2 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=200 Bytes=3400)

 4 1 FILTER

 5 4 SORT (JOIN)

 6 5 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=400 Bytes=6800)

Of course, you can’t help noticing that the original join clause t2.join1 = t1.join1 with a

calculated cardinality of 2,000 is going to identify a proper subset of our new range-based join

t2.join1 between t1.join1 - 1 and t1.join1 + 1, which has been given a calculated cardi-

nality of 200. Clearly there is a problem of consistency that needs to be addressed in the strategy

for calculating range-based joins.

276 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

I shall explain the significance of the filter operation on line 4 in Chapter 13. You might

notice, though, a little reporting error that has made the sort(join) line below the filter lose

its cost figure—which should 34 (as in line 2)—even though the merge join on line 1 does know

about it.

Not Equal

The next special case is inequalities: t1.join1 != t2.join1. The same rule that we learned

for single-table selectivity applies here—the selectivity (not(t1.join1 = t2.join1)) is simply

1 – selectivity (t1.join1 = t2.join1). For example, if we have the following query (based on

join_card_04.sql again):

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t2.join1 != t1.join1 -- (30 / 40 values for num_distinct)

and t2.join2 != t1.join2 -- (50 / 40 values for num_distinct)

;

where we used 1/40 * 1/50 in our calculations when both predicates were equalities, we would

now use 39/40 * 49/50 because we now have two inequalities.

There are some quirky side effects to this—bugs, even. Consider a query with a disjunct

(OR) between two predicates:

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t2.join1 = t1.join1 -- (30 / 40 values for num_distinct)

or t2.join2 = t1.join2 -- (50 / 40 values for num_distinct)

;

All three major versions of Oracle report the cardinality of this query as 2,125,000 (see

join_card_05.sql in the online code suite), but the only version where autotrace gives you a

sensible clue about what is going on is 10g, where the autotrace output looks like this:

Execution Plan (10.1.0.4 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=120 Card=2125000 Bytes=72250000)

 1 0 CONCATENATION

 2 1 HASH JOIN (Cost=60 Card=2000000 Bytes=68000000)

 3 2 TABLE ACCESS (FULL) OF 'T1' (TABLE) (Cost=28 Card=10000 Bytes=170000)

 4 2 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=28 Card=10000 Bytes=170000)

 5 1 HASH JOIN (Cost=60 Card=125000 Bytes=4250000)

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 277

 6 5 TABLE ACCESS (FULL) OF 'T1' (TABLE) (Cost=28 Card=10000 Bytes=170000)

 7 5 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=28 Card=10000 Bytes=170000)

Notice how line 2 shows a cardinality of 2,000,000. In 8i and 9i, this line reports a cardi-

nality of 125,000, which means they should show a total cardinality of 250,000 in line 0—but

both versions then show a total cardinality of 2,125,000.

The problem with the final cardinality is that it is clearly wrong. In fact, if you examine

the 10053 trace, you find that at its very first step the optimizer got the cardinality right (at

4,450,000) and then went through a long-winded process to get to the wrong answer. (If you

put the /*+ no_expand */ hint into this query, Oracle will do a single join, and the execution

plan will show the correct cardinality—but the join will be a horrendous nested loop operation.)

USING HINTS

There are cases where you may want to use hints to force the optimizer into using a particular mechanism for

a join so that it calculates the correct cardinality. There are fairly frequent reports on the various Oracle forums

of examples of SQL where a feature (or enhancement) needs to be disabled by a hint because the feature is

not appropriate for every case.

The 2,000,000 that appears in the first hash join probably comes from the predicate

t2.join2 = t1.join2, using the selectivity of 1/50. I suspect that the 125,000 in the second hash

join is generated by considering a selectivity of 1/40 on the join predicate t2.join1 = t1.join1,

but then introducing an inappropriate, and incorrectly applied, factor of 5% (the bind selectivity

factor) to eliminate rows that have previously been identified by the join2 predicate.

There are two ways you could find out the right answer for the cardinality; one of them is

simply to rewrite the query in an equivalent form, show here with its execution plan:

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t2.join2 = t1.join2

union all

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t2.join1 = t1.join1

and t2.join2 != t1.join2

;

278 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Execution Plan (10.1.0.4 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=120 Card=4450000 Bytes=139300000)

1 0 UNION-ALL

2 1 HASH JOIN (Cost=60 Card=2000000 Bytes=56000000)

3 2 TABLE ACCESS (FULL) OF 'T1' (TABLE) (Cost=28 Card=10000 Bytes=140000)

4 2 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=28 Card=10000 Bytes=140000)

5 1 HASH JOIN (Cost=60 Card=2450000 Bytes=83300000)

6 5 TABLE ACCESS (FULL) OF 'T1' (TABLE) (Cost=28 Card=10000 Bytes=170000)

7 5 TABLE ACCESS (FULL) OF 'T2' (TABLE) (Cost=28 Card=10000 Bytes=170000)

As you can see, when written as an explicit union all, rather than allowing the optimizer

to generate its implicit concatenation, you get a very different cardinality on the second half of

the query.

The alternative way to decide that the cardinality of 2,125,000 is incorrect and that

4,450,000 is right is to fall back on the formula for combining predicates that we first saw in

Chapter 3:

The selectivity of (predicate1 OR predicate2) =

 selectivity of (predicate1) +

 selectivity of (predicate2) -

 selectivity of (predicate1 AND predicate2) -- or you count the overlap twice

From the test cases we’ve used so far (mainly join_card_01.sql and join_card_04.sql),

we already know the individual selectivities:

t1.join1 = t2.join1 1/40

t1.join2 = t2.join2 1/50

t1.join1 = t2.join1 and t1.join2 = t2.join2 1/2000

Hence the selectivity of the t1.join1 = t2.join1 or t1.join2 = t2.join2 should be as

follows:

 1 / 40 + 1 / 50 - 1 / 2000 = 89 / 2000 = 0.0445

Apply that to the 100,000,000 rows that is the unfiltered Cartesian join of the two tables,

and the join cardinality will be 4,450,000—as required.

Clearly, there are cases where the code paths used to work out join selectivities and join

cardinalities are not self-consistent. You may need to take some action to work around the

problems this can cause.

Overlaps

There is a problem built into the implementation. So far we’ve been using well-behaved data,

and I’m about to change that in one important respect. The nice feature of our data is that the

number of distinct values in the join columns has matched up quite well, and the range (low/high

values) of the joins columns has also matched up quite nicely. In other words, our two tables

are supposed to join properly.

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 279

Let’s see what happens to the join cardinality when the overlap is less convenient. The

example (see join_card_06.sql in the online code suite) creates two tables of 10,000 rows each,

and then executes a select statement with a single, simple, predicate:

t1.join1 = t2.join1

The join1 columns both have 100 distinct values, and at the start of the test their values

range from 0 to 99. But we run the test time and time again, rebuilding table t1 each time and

changing the low/high values for t1.join1 by a different offset from the t2.join1 value each

time so that we can report tests where t1.join1 ranging from –100 to –1, or from 100 to 199.

Table 10-1 shows the effects on the cardinality from running a few tests on 9i or 10g.

Remember that column t2.join1 is always built with values from 0 to 99.

Spot the issue—until the point where the tables fail to overlap at all, the computed cardi-

nality does not change from assuming that the overlap is 100%. (In fact, 8i is even worse—it

doesn’t even notice that the overlap has disappeared completely and keeps reporting a cardi-

nality of 1,000,000.) If you want a graphic image of what is happening, Figure 10-1 represents

the 0, 50, and 100 state of the two tables—visually it is obvious that the join is likely to be less

successful as the two tables slide past each other, but the arithmetic simply doesn’t change.

If you are joining two tables with the expectation of eliminating rows because rows in one

table are not supposed to exist in the other table, then the optimizer may well produce an inappro-

priate execution plan because its rules of calculation do not match your knowledge of the data.

Table 10-1. Join Cardinality Problems

t1.join1 Low Value t1.join1 High Value Computed Cardinality Actual Rows

–100 –1 1 0

–50 49 1,000,000 486,318

–25 74 1,000,000 737,270

0 99 1,000,000 999,920

25 124 1,000,000 758,631

50 149 1,000,000 513,404

75 174 1,000,000 262,170

99 198 1,000,000 10,560

100 199 1 0

280 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Figure 10-1. Join cardinality—anomaly

Histograms

I haven’t been entirely truthful about overlaps, because sometimes the optimizer will use alter-

native arithmetic to calculate the join selectivity, and the alternative seems to recognize the

effect of the overlapping ranges. Consider the results shown in Table 10-2, again from 9i/10g,

based on exactly the same data as we used in the previous section, but with a carefully selected

histogram built on the two columns at either end of the join.

Table 10-2. Histograms Helping Join Cardinality

t1.join1 Low Value t1.join1 High Value Computed Cardinality Actual Rows

–100 –1 1,000,000 0

–50 49 1,000,000 486,318

–25 74 1,000,000 737,270

–22 79 622,025 767,437

0 99 1,007,560 999,920

25 124 767,036 758,631

50 149 538,364 513,404

75 174 286,825 262,170

99 198 1,000,000 (10,615) 10,560

100 199 1,000,000 0

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 281

With the histograms in place, I achieved reasonable, though not fantastic, accuracy over a

wide range of overlaps. With the histograms I chose initially, the computed cardinality went

back to 1,000,000 when the low value on t1 went below –22 or above 77.

You will notice that in the 99 row, I have shown a join cardinality of 10,615 in parentheses.

When I changed my histogram definitions, the optimizer got accurate figures, as t1.join1

varied all the way from –99 to +99, before flipping back to a computed cardinality of 1,000,000

when t1.join1 hit +/–100. Histograms look helpful—although they do introduce a new problem

when the data sets don’t overlap at all.

So what was special about my final choice of histograms, and why did one set of histogram

definitions give better results than another? After all, given the way I have been generating my

data using the dbms_random.value() procedure, there aren’t likely to be any extreme values.

The answer is that one set of histograms was built with 85 buckets, the other was built with

a nominal 254.

CHOOSING THE RIGHT NUMBER OF BUCKETS

Recall that 254 buckets is (currently) the maximum number of buckets you can request for a histogram. The

histogram will be a frequency histogram when the number of buckets exceeds the number of different values.

If a histogram on a column is going to be beneficial, you may as well ask for the maximum bucket count

as a first guess at the best number of buckets—the marginal cost of the extra buckets (the default is 75) is not

significant for the potential benefit you could gain from the extra precision.

Since I had only 100 different values in the columns, the histograms with 254 buckets actually

collapsed to become high-precision frequency histograms with 100 endpoints and an exact

picture of the current data content—so the optimizer was able to make very good use of them,

even in the join.

The histograms with 85 buckets were the more common height balanced histograms, and

the critical feature was that one of them (in fact the one at the t2 end of the join) did show a

popular value. It seems that if

• You are running 9i or 10g,

• And you have histograms at both ends of an equality join,

• And at least one histogram either is a frequency histogram or shows a popular value,

then the optimizer has some method (somehow comparing the histogram data to estimate the

number of rows and distinct values in each table in the overlap) that makes it possible to allow

for joins where there is only a partial overlap in the ranges of values in the columns being

joined. Don’t take this as a directive to build histograms all over the place, though. It is useful

to know, however, so that you can test the effects, when you find those few critical pieces of

SQL where you can see a join cardinality going badly wrong.

282 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

FREQUENCY HISTOGRAMS AND DBMS_STATS

There is a problem getting a frequency histogram out of the dbms_stats package. I have examples of data

sets with only 100 distinct values, but the SQL used by Oracle in 9i and 10g (until 10.2) to generate the histo-

gram failed to build a frequency histogram until I requested 134 buckets in the baseline test.

There are a couple of side issues to consider.

First, 8i also takes advantage of histograms in this situation, but the calculations used

must be different because the results are much less accurate unless the histogram is the perfect

frequency distribution histogram. Table 10-3, for example, shows the results you get from 8i

when using the same 85-bucket histograms as we did previously for 9i and 10g.

The other issue is the problem of finding a histogram definition that just happens to work

if you can’t get a frequency distribution histogram. Basically, it is a question of choosing the

right number of buckets to make a popular value visible if there is such a value. The optimizer

seems to check for popular values by comparing the number of buckets defined against the

number of endpoints stored. If you check view user_tab_histograms for a specific column,

then the maximum value for column endpoint_number (assuming you haven’t switched from

a height balanced histogram to a frequency distribution histogram) will be one less than the

number of rows stored if there are no popular values.

To show how awkward it can be to find the right number of buckets for a histogram, look

at Table 10-4, which was generated from the data used for the tests in join_card_06.sql. It lists

a range of bucket counts and shows whether or not each bucket count managed to identify a

popular value—remember, all I am doing in this test is changing the number of buckets in the

Table 10-3. Histograms in 8i Give Different Join Arithmetic

t1.join1 Low Value T1.join1 High Value Computed Cardinality Actual Rows

–100 –1 1,000,000 0

–50 49 147,201 486,318

–25 74 350,499 737,270

–10 89 497618 895,925

0 99 616,242 999,920

25 124 447,791 758,631

50 149 328,109 513,404

75 174 167,392 262,170

99 198 41,034 10,560

100 199 1,000,000 0

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 283

histogram, I am not changing the data itself. The last column in the table shows the effect that

the choice of bucket count had on our test query when the overlap between the two tables was

fixed at 50%. The results are actually taken from the 8i tests, but similar (slightly less dramatic)

results also came out of the 9i and 10g tests.

The problem with depending on histograms to get correct join cardinalities is that you

dare not regenerate the histograms in case the data has just changed enough to hide all popular

values for the number of columns you have selected. On the other hand, you dare not leave the

histograms unchanged if the data keeps changing in a way that moves the high (or low) values,

as the size of the overlap is the thing that you are trying to capture with the histogram.

■Note It is an interesting point that the optimizer can use the density from user_tab_columns instead

of 1/num_distinct when applying filter predicates but doesn’t seem to do so when applying join predicates

(at least not directly; it is possible that the join selectivity is derived from the density in some way that I

haven’t yet worked out).

It’s a difficult problem to address—essentially it comes down to knowing your data, recog-

nizing the few critical cases, and tailoring a specific mechanism to each of them.

Transitive Closure

It doesn’t matter how much you know, there are always new examples that need further inves-

tigation. What happens if your query includes an extra predicate against the join columns,

such as the following example?

Table 10-4. Picking the Right Bucket Count Is a Matter of Luck

Bucket Count Found Popular Computed Cardinality at 50% Overlap

76 Yes 367,218

77 No 1,000,000

78 Yes 348,960

79 Yes 355,752

80 No 1,000,000

81 Yes 346,040

82 No 1,000,000

83 Yes 336,838

284 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t1.join1 = 20 -- 30 distinct values

and t2.join1 = t1.join1 -- 40 / 30 distinct values

and t2.join2 = t1.join2 -- 40 / 50 distinct values

;

This is the data set that we used in join_card_04.sql, but the actual test script is

join_card_07.sql in the online code suite. The comments show the number of distinct values

in each column, in the order that the column names appear on the line.

The original execution plan (i.e., without the constant predicate t1.join1 = 20) looked

like this:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=60 Card=50000 Bytes=1700000)

 1 0 HASH JOIN (Cost=60 Card=50000 Bytes=1700000)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=10000 Bytes=170000)

 3 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=10000 Bytes=170000)

With the extra predicate in place, we now have a plan like this:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=57 Card=1667 Bytes=56678)

 1 0 HASH JOIN (Cost=57 Card=1667 Bytes=56678)

 2 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=250 Bytes=4250)

 3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=333 Bytes=5661)

How has the optimizer managed to produce such a dramatic difference in the cardinalities

all the way through the plan? (They are the right values, by the way.) The trick is revealed when

you look at a more detailed execution plan (from the dbms_xplan package, for example).

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | 1667 | 56678 | 57 |

|* 1 | HASH JOIN | | 1667 | 56678 | 57 |

|* 2 | TABLE ACCESS FULL | T2 | 250 | 4250 | 28 |

|* 3 | TABLE ACCESS FULL | T1 | 333 | 5661 | 28 |

--

Predicate Information (identified by operation id):

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 285

 1 - access("T2"."JOIN2"="T1"."JOIN2")

 2 - filter("T2"."JOIN1"=20)

 3 - filter("T1"."JOIN1"=20)

Note particularly the second line of Predicate Information. There is a predicate,

t2.join1 = 20 ..., but we didn’t have that one in the original SQL, the optimizer derived it

using a mechanism known as transitive closure. You will also note that there is no longer a

predicate t2.join1 = t1.join1; in the process of transitive closure, this predicate became

redundant and was thrown away.

Transitive closure means the optimizer is allowed to infer the following: If

colB = colA

and

colA = {constant X}

then

colB = {constant X}

In our case, we have

t2.join1 = t1.join1

and

t1.join1 = 20

so

t2.join1 = 20

and the join condition can be discarded.

So we have changed our SQL from a two-column join with one filter predicate to a single-

column join with two filter predicates. So let’s reprise the standard form of the basic formula,

and put the numbers in—remembering that in our example, both the join columns are called

join2, and both the filtering columns are called join1:

Join Selectivity =

 ((num_rows(t1) - num_nulls(t1.c1)) / num_rows(t1)) *

 ((num_rows(t2) - num_nulls(t2.c2)) / num_rows(t2)) /

 greater(num_distinct(t1.c1), num_distinct(t2.c2))

Join Cardinality =

 join selectivity *

 filtered cardinality(t1) * filtered cardinality(t2)

Join Selectivity =

 ((10000 - 0)/ 10000) *

 ((10000 - 0)/ 10000) /

 greater(40, 50) = -- t1.join2, t2.join2 (num_distinct)

 1/50

286 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Join Cardinality =

 (1 / 50) *

 10000/30 * 10000/40 = -- t1.join1 has 30 values, t2.join1 has 40

 333 * 250 / 50 =

 1,666.66

You get the same result from 9i and 10g. (You may recall that when we first looked at the

two-column join, we saw that 10g had a special sanity check that took both selectivities from a

single table. But in this case the process of transitive closure has eliminated one of our two join

predicates, so this sanity check does not take place.)

As ever, though, it is possible to break things. What’s going to happen if you explicitly add

the extra, redundant, predicate, so that the where clause now looks like this:

where

 t1.join1 = 20 -- 30 distinct values

and t2.join1 = t1.join1 -- 40 / 30 distinct values

and t2.join2 = t1.join2 -- 40 / 50 distinct values

and t2.join1 = 20 -- 40 distinct values

This is what you get from dbms_xplan for 9i (the computed cardinality is 52 in 10g):

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | 42 | 1428 | 57 |

|* 1 | HASH JOIN | | 42 | 1428 | 57 |

|* 2 | TABLE ACCESS FULL | T2 | 250 | 4250 | 28 |

|* 3 | TABLE ACCESS FULL | T1 | 333 | 5661 | 28 |

--

Predicate Information (identified by operation id):

 1 - access("T2"."JOIN1"="T1"."JOIN1" AND "T2"."JOIN2"="T1"."JOIN2")

 2 - filter("T2"."JOIN1"=20)

 3 - filter("T1"."JOIN1"=20)

Obviously something nasty has happened because the computed cardinality is down from

a reasonably accurate 1,667 to a dangerously inaccurate 42.

Check the Predicate Information—the predicate t2.join1 = t1.join1 has reappeared.

The optimizer did not need to use transitive closure to generate the predicate t2.join1 = 20,

so the join predicate never got eliminated. In effect, this means that the optimizer double-

counts the selectivity on t2.join1, once for the join selectivity (the access), and once for the

filtered cardinality (the filter). Repeating the arithmetic we did when we first saw a two-column

selectivity, the join selectivity for this query is

Join Selectivity =

 {join1 bit} *

 {join2 bit} =

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 287

 (10,000 - 0) / 10,000) *

 (10,000 - 0) / 10,000) /

 greater(30, 40) *

 (10,000 - 0) / 10,000) *

 (10,000 - 0) / 10,000) /

 greater(50, 40) =

 1/40 * 1/50 = 1/2000

Then we apply this to the filtered cardinalities we got earlier on in this example to get the

final result:

Join Cardinality =

 (1 / 2000) *

 10000 / 30 * 10000 / 40 =

 333 * 250 / 2000 =

 41.625

The result is different for 10g because of the multicolumn sanity check—instead of a join

selectivity of 1/2,000, the optimizer would pick the individual selectivities from whichever

table produced the smaller results (in this case t2, giving 1/40 * 1/40 = 1/1,600). So for 10g

we get

Join Cardinality =

 (1 / 1600) *

 10000 / 30 * 10000 / 40 =

 333 * 250 / 2000 =

 52.031

Historically, people have found bugs with the optimizer that allowed them to trick it into

using different execution plans by repeating simple predicates. In recent versions (9i and above)

the optimizer has been enhanced to eliminate duplicated predicates, but it can still be caught

by little quirks in the area of predicate generation by transitive closure. The preceding example

is just one case where things go wrong. Another example is this:

select

 t1.v1, t2.v1

from

 t1,

 t2

where

 t1.join1 = 20

and t2.join1 = t1.join1

and t2.join1 = t1.join1 -- duplicated join predicate

and t2.join2 = t1.join2

;

Notice the duplicated predicate. The optimizer ought to spot it and not consider it, and if

the duplication had been on the join2 columns, this is exactly what would have happened.

288 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Unfortunately the query is transformed before the duplication is noticed. The optimizer eliminates

one of the duplicates through transitive closure, leaving the other behind—and calculates a

cardinality of 42 (9i) or 52 (10g) just like the previous example.

Moreover, as we saw in Chapter 6, the way in which transitive closure works is affected in

8i and 9i (but not 10g) by setting parameter query_rewrite_enabled to true. With this setting,

the join predicates in my example will not be discarded as they generate the extra filter predi-

cates. Rerun script join_card_07.sql, but set query_rewrite_enabled to true before doing so,

and the join cardinality will change from the correct 1,667 we saw at the start of this section to

the incorrect 42 we saw in the last example.

Three Tables
Although I said at the start of this chapter that Oracle only ever joins two tables at a time, it is

worth walking through at least one example of a three-table join because it isn’t intuitively

obvious where the necessary selectivities will come from as the third table is joined to the

previous pair.

My example (join_card_08.sql in the online code suite) demonstrates the awkward case

where the third table is joined to columns from both the second and first tables. To keep the

arithmetic easy, we start with 10,000 rows in each table. The query, and its execution plan,

follows:

select

 t1.v1, t2.v1, t3.v1

from

 t1,

 t2,

 t3

where

 t2.join1 = t1.join1 -- 36 / 40 distinct values

and t2.join2 = t1.join2 -- 38 / 40 distinct values

--

and t3.join2 = t2.join2 -- 37 / 38 distinct values

and t3.join3 = t2.join3 -- 39 / 42 distinct values

--

and t3.join4 = t1.join4 -- 41 / 40 distinct values

;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=109 Card=9551 Bytes=573060)

 1 0 HASH JOIN (Cost=109 Card=9551 Bytes=573060)

 2 1 TABLE ACCESS (FULL) OF 'T3' (Cost=28 Card=10000 Bytes=200000)

 3 1 HASH JOIN (Cost=62 Card=62500 Bytes=2500000)

 4 3 TABLE ACCESS (FULL) OF 'T1' (Cost=29 Card=10000 Bytes=200000)

 5 3 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=10000 Bytes=200000)

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 289

Whatever it may look like at first sight of the execution plan, the join order for this query is

t1 ➤ t2 ➤ t3. Oracle hashes t3 into memory, then hashes t1 into memory, then starts to read

t2. For each row in t2 Oracle probes the t1 hash for a match, so the first join is t1 ➤ t2; and if

the first probe is successful, Oracle probes the t3 hash for a match, so the second join is t2 ➤

t3—although, technically, you should say the second join is (t1 ➤ t2) ➤ t3.

Our task is to work out how the optimizer got an intermediate cardinality of 62,500 for the

t1 ➤ t2 hash, and how it then got a cardinality of 9,551 by joining t3 to the intermediate result

set. We just have to take it in steps.

First join t2 to t1—you will appreciate that I have avoided filter predicates and nulls just

to keep the example simple—but it really is just a question of applying the formula repeatedly

and using the right numbers. We have two columns in the join from t1 to t2, so we apply the

selectivity for each in turn (remembering to check for the multicolumn sanity check if we are

running 10g):

Join Selectivity =

 {join1 bit} *

 {join2 bit} =

 ((10000 - 0) / 10000) *

 (10000 - 0) / 10000)) /

 greater (36 , 40) *

 ((10000 - 0) / 10000) *

 (10000 - 0) / 10000)) /

 greater (38 , 40) =

 1/1600

Join Cardinality =

 1 / 1600 *

 10000 * 10000 =

 62,500

Now we have an intermediate table of 62,500 rows, and we have another table to join to

it—this time with three join columns. Again we apply the formula:

Join Selectivity =

 {join2 bit} *

 {join3 bit} *

 {join4 bit} =

 ((10000 - 0) / 10000) *

 (10000 - 0) / 10000)) /

 greater(37, 38) * -- or should this be greater(37, 40)

290 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

 ((10000 - 0) / 10000) *

 (10000 - 0) / 10000)) /

 greater(39, 42) *

 ((10000 - 0) / 10000) *

 (10000 - 0) / 10000)) /

 greater(41, 40) =

 1/65,436

Join Cardinality =

 1 / 65436 *

 62500 * 10000 =

 9,551 (as required)

The arithmetic raises an interesting point. In the calculation of join selectivity, I have used

the num_distinct, num_nulls, and num_rows figures from the table that owned the join3 and

join2 columns, where ownership is dictated by the table aliases visible in the join in the original

SQL. (Hence my question in the middle of the calculation—should I be using greater(37, 40)

instead of greater(37, 38)?)

Amongst other things, this raises the question of what you do about null columns (which

we will deal with in the next section), and how you may inadvertently (or deliberately) change

the computed cardinality by changing your choice of join predicates.

Look at the original query again; it includes the following predicates:

 t2.join1 = t1.join1

and t2.join2 = t1.join2

--

and t3.join2 = t2.join2 -- but t2.join2 = t1.join2

and t3.join3 = t2.join3

--

and t3.join4 = t1.join4

If we change the commented predicate, we see that the following would be an equally valid

list of predicates. Remember, transitive closure only takes place if there is a literal constant some-

where in the chain, so we have to make this change manually; it can’t happen automatically:

 t2.join1 = t1.join1

and t2.join2 = t1.join2

--

and t3.join3 = t2.join3

--

and t3.join2 = t1.join2 -- was t3.join2 = t2.join2

and t3.join4 = t1.join4

And under the 9i, the execution plan with this version of the join becomes the following:

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 291

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=109 Card=9074 Bytes=544440)

 1 0 HASH JOIN (Cost=109 Card=9074 Bytes=544440)

 2 1 TABLE ACCESS (FULL) OF 'T3' (Cost=28 Card=10000 Bytes=200000)

 3 1 HASH JOIN (Cost=62 Card=62500 Bytes=2500000)

 4 3 TABLE ACCESS (FULL) OF 'T1' (Cost=29 Card=10000 Bytes=200000)

 5 3 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=10000 Bytes=200000)

Note particularly how the computed cardinality of the final result has dropped from 9,551

to 9,074—simply because we made a small and completely valid rearrangement of the predi-

cates (which is the sort of thing you might do for purely cosmetic reasons to conform to coding

standards), and the formula necessarily changed greater(37, 38) to greater (37, 40).

Arguably this is a defect of the optimizer. We produced the intermediate cardinality of

62,500 in line 3 by using the selectivity of the join2 column from table t1, and then used this

same selectivity when joining the intermediate result to table t3 to get a final cardinality of

9,074. But in the previous version of the text, we used the selectivity from table t1 to generate

the intermediate result set, and then used the selectivity from table t2 to join the intermediate

result set to table t3. In an ideal system, the optimizer should surely handle the selectivity of a

column consistently all the way through a complex join.

There is a further impact to consider when you move to 10g. With the first arrangement of

predicates, the final cardinality is unchanged at 9,551; but if you switch to the second arrange-

ment of predicates, the final cardinality becomes 9,301 (rather than 9,074).

Remember the multicolumn sanity check? Take another look at the second arrangement

of predicates. In the first arrangement, you see two possible sanity checks—t2 to t1, and t3 to

t2. In the second arrangement, you also see two possible sanity checks—t2 to t1, and t3 to t1.

It just so happened that the t3 to t1 sanity check kicked in on the second arrangement, so not

only did we use the t1 selectivity for column join2, we also used the t1 selectivity for column

join4 when we had previously been using the t3 selectivity for column join4.

If that’s not confusing enough for you, you could always make matters worse. If you decide

to include both t3.join2 = t2.join2 and t3.join2= t1.join2, then the optimizer will use both

of them in calculating the final cardinality, which then drops from several thousand down to 239.

Be very careful how you write your multitable joins.

Nulls
After all the hassles with three table joins, predicate rearrangements, and sanity checks, what

other complications could there possibly be to make joins difficult? If you haven’t upgraded to

9i or 10g yet, then be prepared for a few surprises with nulls.

I wasn’t entirely truthful in my earlier treatment of nulls—I chose to overlook a feature

that is largely irrelevant when handling only two tables. However, the strategy for handling

nulls changed between 8i and 9i. In fact, the change was so significant that the formula for join

selectivity in MetaLink note 68992.1 isn’t always true any more.

Based on the testing I have done, when the number of nulls in a join column exceeds 5%

of the rows in the table, then the arithmetic changes.

292 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Script join_card_09.sql in the online code suite builds three tables, and joins them along

a column containing nulls. The computed cardinality for 8i is a long way off the computed

cardinality for 9i and 10g.

create table t1 as

select

 mod(rownum-1,15) n1,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 150

;

update t1 set n1 = null where n1 = 0;

t1 is defined with 150 rows, and column n1 has ten copies of each of the values 1 to 14 and

null. So num_rows = 150, num_distinct = 14, and num_nulls = 10.

Create tables t2 and t3 similarly but inserting 120 rows using mod(n1,12) in table t2, and

100 rows using mod(n1,10) in table t3. So table t2 ends up with the values 1 to 11 in column n1

and table t3 ends up with the values 1 to 9.

So all three tables have ten rows each for any value of column n1, and there are ten nulls

in n1 in every single table—and that is enough nulls to exceed the critical 5% limit. We now run

a query that joins all three tables along the n1 column and check the execution plan for 8i and 9i.

Select /*+ ordered */

 t1.v1, t2.v1, t3.v1

from

 t1,

 t2,

 t3

where

 t2.n1 = t1.n1

and t3.n1 = t2.n1

;

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=8 Card=9000 Bytes=378000)

 1 0 HASH JOIN (Cost=8 Card=9000 Bytes=378000)

 2 1 TABLE ACCESS (FULL) OF 'T3' (Cost=2 Card=140 Bytes=1960)

 3 1 HASH JOIN (Cost=5 Card=900 Bytes=25200)

 4 3 TABLE ACCESS (FULL) OF 'T1' (Cost=2 Card=90 Bytes=1260)

 5 3 TABLE ACCESS (FULL) OF 'T2' (Cost=2 Card=110 Bytes=1540)

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 293

Execution Plan (8.1.7.4 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=5 Card=8250 Bytes=346500)

 1 0 HASH JOIN (Cost=5 Card=8250 Bytes=346500)

 2 1 TABLE ACCESS (FULL) OF 'T3' (Cost=1 Card=150 Bytes=2100)

 3 1 HASH JOIN (Cost=3 Card=900 Bytes=25200)

 4 3 TABLE ACCESS (FULL) OF 'T1' (Cost=1 Card=100 Bytes=1400)

 5 3 TABLE ACCESS (FULL) OF 'T2' (Cost=1 Card=120 Bytes=1680)

9i has produced a computed cardinality of 9,000, while 8i has reached the value 8,250. You

will, however, note that at line 3, both versions of Oracle have got the same cardinality (900) for

the join between tables t1 and t2, even though they have produced different cardinalities for

each of the individual table scans on lines 4 and 5.

As a starting point, you might want to work out the actual number of rows returned:

• There are nine different (nonnull) values of n1 in table t1, at 10 rows per value for a total

of 90 rows.

• For each of those rows, there are 10 rows in table t2—so joining t1 to t2 will give

900 rows.

• For each of the joined rows, there are 10 rows in t3—so the final join will be 9,000 rows.

And 9i has got the right answer.

The first clue about the difference comes from a more detailed explain plan. Use explain

plan and dbms_xplan in 9i and you will find that three extra (filter) predicates have appeared

from somewhere:

t1.n1 is not null

t2.n1 is not null

t3.n1 is not null

These predicates are there because they have to be true—after all if t1.n1 = t1.n2, then

neither column can be null. This affects the calculations, because if they appear as filter pred-

icates, you have to change the bit in the join selectivity formula that caters to null values: the

(num_rows - num_nulls) / num_rows factor.

So the old-style 8i calculations look like this:

T1 to T2: the tables with 100 and 120 rows respectively:

Join Selectivity =

 (100 - 10) / 100) *

 (120 - 10) / 120) /

 greater(9, 11) = 0.075

Join Cardinality =

 0.075 * 100 * 120 = 900

294 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

Intermediate to T3: the table with 150 rows:

Join Selectivity =

 (120 - 10) / 120) * -- the CBO uses the t2 figures at one end

 (150 - 10) / 150) / -- of the join, and the t3 at the other.

 greater(11, 14) =

 0.0611111

Join Cardinality =

 0.061111 * 900 * 150 =

 8,250

But the new-style 9i calculations look like this:

T1 to T2: the tables with 100 and 120 rows respectively:

Join Selectivity =

 1 / greater(9, 11) =

 0.09090909

Join Cardinality =

 0.09090909 * 90 * 110 =

 900

Intermediate to T3: the table with 150 rows:

Join Selectivity =

 1 / greater(11, 14) =

 0.0714285

Join Cardinality =

 0.0714285 * 900 * 140 =

 9,000 (as required)

Note, with 9i, how we have factored the effects of the is not null predicates into the join

cardinality line as the filtered cardinality of each of the individual tables. This gives us a more

appropriate answer than the 8i strategy, which has factored the null count of n1 into the calcu-

lations twice, once in the first join and then again in the second join, and so produced a final

cardinality that is too low.

Of course, as you upgrade from 8i to 9i, queries involving multiple tables joining along the

same nullable columns may suddenly change their execution plans because the computed

cardinality goes up. If the computed cardinality has increased for one step of a query, the opti-

mizer may decide that the next step should be a hash or merge join rather than a nested loop

join.

I can’t think of a rationale why this change only applies when the null count exceeds 5% of

the row count, as it seems to be reasonable to invoke the rule across the board. But perhaps the

limit has been imposed to reduce the number of queries that might change path on upgrade.

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 295

Implementation Issues
There are many ways to implement Oracle systems badly, and as a general rule, anything that

hides useful information from the optimizer is a bad idea. One of the simple, and highly

popular, strategies for doing this is to stick all your reference data into a single table with a type

column. The results can be catastrophic as far as the optimizer is concerned. Unless you are

very lucky, the optimizer will calculate ridiculously inappropriate cardinalities for most simple

joins to this reference table. For example (see script type_demo.sql in the online code suite):

create table t1

as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 3000

)

select

 trunc(dbms_random.value(0,20)) class1_code,

 trunc(dbms_random.value(0,25)) class2_code,

 rownum id,

 lpad(rownum,10,'0') small_vc

from

 generator v1,

 generator v2

where

 rownum <= 500000

;

We create a table of 500,000 rows that requires two lookups to expand meaningless code

numbers into recognizable descriptions. I have restricted the test case to just a pair of reference

sets with similar numbers of entries in each set to avoid some of the oddities that I mention in

the next section, and to keep the arithmetic straightforward. Consider the following query:

select

 t1.small_vc,

 type1.description

from

 t1, type1

where

 t1.id between 1000 and 1999

and type1.id = t1.class1_code

and type1.type = 'CURRENCY'

and type1.description = 'GBP'

;

296 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

All this does is select some rows from my large table, and join to a reference table to trans-

late a code into a description to eliminate data based on that description. This is typical of the

way in which an end-user query would have to make use of the type table. (The SQL in the test

case in the download does not use the literal values 'CURRENCY' and 'GBP', but I thought that a

couple of meaningful code samples would help make the point of the example more clearly.)

So what does the execution plan look like? It depends on what you’ve done with your refer-

ence tables. Here’s one option for the reference table—the currency data (or 'CLASS1' as it

really was) is stored in a table all by itself:

create table type1 as

select

 rownum-1 id,

 'CLASS1' type,

 lpad(rownum-1,10,'0') description

from

 all_objects

where

 rownum <= 20

;

Based on this definition, an informal argument about the query would be that we are aiming

for 1,000 rows from the base table, and the restriction to one description out of 20 (rownum <= 20) in

the reference table will give us 50 rows in the final result set. Here’s the execution plan:

Execution Plan (9.2.0.6 autorace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=287 Card=50 Bytes=1950)

1 0 HASH JOIN (Cost=287 Card=50 Bytes=1950)

2 1 TABLE ACCESS (FULL) OF 'TYPE1' (Cost=2 Card=1 Bytes=20)

3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=284 Card=1001 Bytes=19019)

Sure enough, the calculated cardinality for the join is 50 rows. We can check the formulae—

presented in their simplest form given we have no null values to worry about:

Join Selectivity = 1 / greater(20, 20) = 1/20

Join Cardinality = 1/20 * (20/20 * (500,000 * 1001/500000)) = 50

Now let’s create a reference table that holds two sets of data and see what happens.

create table type2 as

select

 rownum-1 id,

 'CLASS1' type,

 lpad(rownum-1,10,'0') description

from

 all_objects

where

 rownum <= 20

union all

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 297

select

 rownum-1 id,

 'CLASS2' type,

 lpad(rownum-1,10,'0') description

from

 all_objects

where

 rownum <= 25

;

update type2 set

 description = lpad(rownum-1,10,'0')

;

We now have 45 rows in the reference table, and 45 distinct descriptions—but we now

have 25 different ID values and two different type values. From a human perspective, we can

identify exactly the 20 rows that belong to the join type and understand what is going on, but

the optimizer simply does the arithmetic. Repeat the query (changing the name of the reference

table) and the execution plan looks like this:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=287 Card=25 Bytes=975)

1 0 HASH JOIN (Cost=287 Card=25 Bytes=975)

2 1 TABLE ACCESS (FULL) OF 'TYPE2' (Cost=2 Card=1 Bytes=20)

3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=284 Card=1001 Bytes=19019)

The cardinality is wrong—but not quite as wrong as I was expecting it to be. In principle,

the join selectivity should have changed from 1/20 to 1/25—dictated by the unfortunate truth

that the type we are not interested in has more distinct values for the ID than the type we are

interested in. Moreover, the filtering on the type2 table has changed from 1/20 to (1/2 * 1/45 =

1/90). So we hope to see the following appearing in the formulae:

Join Selectivity = 1 / greater(25, 20) = 1/25

Join Cardinality = 1/25 * (45/90 * (500,000 * 1001/500000)) = 20

It’s not right—but it’s easy to see where the wrong numbers have come from, the opti-

mizer should have used 1/25 for the selectivity but in fact it seems to have used 1/20—and we

can check this very precisely by examining the 10053 trace: in this example the optimizer really

has used the smaller num_distinct to calculate the join selectivity.

I don’t yet know what the rules are that made it take that choice, but look at the exact value

of the sel entry in the join cardinality lines that I’ve extracted from the 10053 trace files from

all three versions of Oracle. The optimizer has used 1/20, not 1/25, which produces a final

cardinality (in 9i and 10g) of 25.

10g Join Card: 25.03 = outer (0.50) * inner (1001.00) * sel (5.0000e-002)

9i Join cardinality: 25 = outer (1) * inner (1001) * sel (5.0000e-002) [flag=0]

8i Join cardinality: 50 = outer (1) * inner (1002) * sel (5.0000e-002) [flag=0]

298 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

It is very instructive to compare trace files across versions—sometimes you see very clearly

how confusing it can be to guess what’s going on. Notice how the 9i trace file has reported the

same figures (allowing for a small rounding error) as the 8i trace in the calculation, but manages

to come up with 25 as its final answer. Clearly 9i is tracking its intermediate results with high

precision, but reporting them to the nearest integer (see the outer(1) in the 9i line in the

preceding example). This move to high-precision calculations is controlled by the hidden

parameter _optimizer_new_join_card_computation, which has the description “compute join

cardinality using non-rounded input values” and defaults to true in 9i. Conveniently, the 10g

trace file catches up with this feature and reports the intermediate results to two decimal places.

Finally, 8i rounds and truncates as it goes—which means that in this specific case, it’s actually

going to come up with the right answer for the wrong reason.

SELECTIVITY RULES

Elsewhere in this book, I have said that there are cases where the optimizer uses 1/num_rows when the selectivity

derived from multiple predicates falls below a critical limit. This may be true some of the time, but as you can

see from the outer(0.5) in the 10g trace extract, sometimes the optimizer will use a selectivity that is

smaller than 1/num_rows.

It is possible that my earlier assumption is actually wrong, and only appears to be true because of variations

in the rounding strategy. It is possible that what I have observed is the optimizer rounding an intermediate

result up to 1—giving the impression that there was a lower limit of 1/num_rows on a computed selectivity.

Of course, when things go wrong because of odd data distributions, like that type column,

we can always fall back on generating histograms—we hope. Clearly the problem has appeared

because we have two types in the same table, so let’s create a cumulative frequency histogram

on the type column and see what happens:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=287 Card=22 Bytes=858)

1 0 HASH JOIN (Cost=287 Card=22 Bytes=858)

2 1 TABLE ACCESS (FULL) OF 'TYPE2' (Cost=2 Card=1 Bytes=20)

3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=284 Card=1001 Bytes=19019)

Would you believe it, the result gets worse. The optimizer has recognized that there is an

uneven distribution on the type column, and knows that there are 20 rows with type = 'CLASS1'

and 25 rows with type = 'CLASS2', but it still has no information to tell it that the description

we are supplying belongs in 'CLASS1', and therefore should be treated as one of 20 rather than

one of 45. (In effect, because we have amalgamated several sets of data into a single set with a

type column, we have caught ourselves in the trap of dependent data columns described in

Chapter 6 in the section “Correlated Columns.”)

In the test case I used for this chapter, the calculations are only out by a factor of two—but

I engineered the test data by combining just two sets of reference data that were both about the

same size. If you combine several sets of reference data, and the number of rows in the sets vary

significantly, then the error can be huge.

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 299

Consider, for example, how bad the error could be when one reference data set has 3 entries,

and another has 6,000—with an average number of rows per data set in the region of a couple

of hundred. The cardinality of a simple join could easily be out by a factor of 100 or more.

If you find yourself in this trap, there is a simple (though possibly expensive) solution. Re-

create the table as a list partitioned table, partitioning on the type column. If you do this, and

if every query against the table references the type column as a literal value—watch out for

cursor_sharing—then you have effectively turned the single table into one table per data set as

the optimizer will use the partition level statistics to do its arithmetic. The expense, of course,

comes from the license fee for the partitioning option.

Difficult Bits!
I am reluctant to call something a bug unless I can work out what Oracle is doing and can prove

that it’s doing something irrational. Too many people say, “It’s a bug” when they really mean

“I don’t know why this happened.”

In the case of the cost based optimizer and join cardinality, it is easy to make ridiculous

numbers appear in very simple examples. Unfortunately, I can’t figure out why these numbers

might be appearing, so I can’t decide whether I’m seeing something that might really be a bug,

or might just be an unexpected side effect of a deliberately coded assumption. For example

(see join_card_10.sql in the online code suite):

create table t1 as

select

 trunc(dbms_random.value(0, 100)) filter,

 trunc(dbms_random.value(0, 30)) join1,

 trunc(dbms_random.value(0, 20)) join2,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 10000

;

create table t2 as

select

 trunc(dbms_random.value(0, 100)) filter,

 trunc(dbms_random.value(0, 4000)) join1,

 trunc(dbms_random.value(0, 50)) join2,

 lpad(rownum,10) v1,

 rpad('x',100) padding

from

 all_objects

where

 rownum <= 10000

;

300 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

We’re going to do a two-column join with a filter on the two tables. Note that the filter

columns have identical definitions (although the data content is randomized). More significantly,

though, one of the join columns is dramatically different from its counterpart. Column t1.join1

holds only 30 distinct values ranging from 0 to 29, column t2.join1 holds a nominal 4,000 distinct

values ranging from 0 to 3,999. (In fact, there were 3,668 distinct values in this column because

of the effects of the random data generation.)

After creating the data, we run two queries—the following SQL encapsulates both of them;

the second query can be constructed by switching the comment marker from one filter predi-

cate to the other.

select

 t1.v1, t2.v1

from

 t1, t2

where

 t2.join1 = t1.join1

and t2.join2 = t1.join2

and t1.filter = 10

-- and t2.filter = 10

;

Since the two filter columns are identical, to within a little random scattering, you might

think that the optimizer would produce the same cardinality whichever filter column is used to

identify 1% of the joined data. There is a bit of flaw in that argument in extreme cases, and

Oracle seems to make some attempts to address it. These are the execution plans.

Execution Plan (9.2.0.6, autotrace. Filter on t1)

--

 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=57 Card=7 Bytes=266)

 1 0 HASH JOIN (Cost=57 Card=7 Bytes=266)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=100 Bytes=2000)

 3 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=10000 Bytes=180000)

Execution Plan (9.2.0.6, autotrace. Filter on t2)

--

 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=57 Card=500 Bytes=19000)

 1 0 HASH JOIN (Cost=57 Card=500 Bytes=19000)

 2 1 TABLE ACCESS (FULL) OF 'T2' (Cost=28 Card=100 Bytes=2100)

 3 1 TABLE ACCESS (FULL) OF 'T1' (Cost=28 Card=10000 Bytes=170000)

Why are the computed cardinalities so amazingly different? According to the formulae:

Join Selectivity =

 {join1 bit} *

 {join2 bit} =

 1 / greater (30, 3,668) *

 1 / greater (20, 50) =

 0.00000545256

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 301

Join Cardinality =

 0.00000545256 *

 10000 * 100 =

 5.4526

So why has the optimizer worked out a selectivity (which we can see in the 10053 trace) of

exactly 5.0000e-004 when we apply the filter to table t2 (3,668 distinct values), and a selectivity

of 7.1744e-006 when we apply the filter to table t1 (30 distinct values)?

As you saw previously, one of the complications appears because both our test statements

have a filter predicate on just one side of the join—so the standard formula is modified to use

the num_distinct values from the other side of the join.

But then if you vary the test by generating column t1.join1 as dbms_random.value(0,30) + 1,

the computed cardinality of one test changes; and again, if you change the test to generate column

t1.join1 as 50 * dbms_random.value(0,30), the computed cardinality of one test changes quite

dramatically. But remember the special calculation described in Chapter 6 where the opti-

mizer produced some unexpected numbers when we had a small number of distinct values

with a large range. In this join test, column join t1.join1 has 30 distinct values joining to a

column with a range of 4,000. Perhaps the odd numeric effects are simply the result of the same

algorithm we saw before, applied in a different way.

Generally, complications set in as a result of three possible conditions:

• The number of distinct values for a column in one table is massively different from the

number of distinct values in the corresponding column in the other table.

• The two ranges of values are massively different from each other.

• The product of the individual selectivities used in the join selectivity formula is much

larger than the number of rows in the tables involved.

All three conditions certainly ought to have some impact on the join cardinality, but I’d

prefer it if they did so in a way that seemed to have an intuitive explanation.

If you care to run this example in 10g, though, you will find that things have changed, and

not necessarily for the better. Because of the multicolumn sanity check effect, you get the same

computed cardinality whether the filter is on t1 or t2. In both cases, the join selectivity switches to

0.0001 (1/num_rows for table t2), so the join cardinality is a constant 100. Unfortunately, this is

much too high—and highlights another case where you may find dramatic swings in execution

plans when you upgrade.

Features
Whatever else may occur, you can guarantee that it will be possible to find some optimizer

bugs (or anomalies or limitations) in the leading-edge pieces of code. Here, for example, is a

bug in the underlying treatment of descending indexes that results in an error in cardinality in

9i (the bug is fixed in 10g). The code is descending_bug.sql in the online code suite.

302 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

create table t1 as

select

 mod(rownum,200) n1,

 mod(rownum,200) n2,

 rpad(rownum,215) v1

from

 all_objects

where

 rownum <= 3000

;

create table t2 as

select

 trunc((rownum-1)/15) n1,

 trunc((rownum-1)/15) n2,

 rpad(rownum,215) v1

from

 all_objects

where

 rownum <= 3000

;

create index t2_i1 on t2(n1 /* desc */);

-- Collect statistics using dbms_stats here

select

 t1.n1, t2.n2, t1.v1

from

 t1,

 t2

where

 t1.n2 = 45

and t2.n1 = t1.n1

;

The cardinality reported for this query depends on whether you use a normal index, or

take out the comment marks in the 'create index' statement and use a descending index.

Here are the two execution plans:

Execution Plan (9.2.0.6 autotrace - normal B-tree index)

--

 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=33 Card=225 Bytes=51750)

 1 0 HASH JOIN (Cost=33 Card=225 Bytes=51750)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=16 Card=15 Bytes=3330)

 3 1 TABLE ACCESS (FULL) OF 'T2' (Cost=16 Card=3000 Bytes=24000)

Execution Plan (9.2.0.6 autotrace - descending B-tree index)

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 303

--

 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=33 Card=1 Bytes=230)

 1 0 HASH JOIN (Cost=33 Card=1 Bytes=230)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=16 Card=15 Bytes=3330)

 3 1 TABLE ACCESS (FULL) OF 'T2' (Cost=16 Card=3000 Bytes=24000)

Note how the join cardinality has changed from 225 to just 1 because the index has been

changed. Note, even more spectacularly, that the cardinality has been changed even though

the execution plan doesn’t even use the index! (I have an even more extraordinary example of

this type of surprise in the script delete_anomaly.sql in the online code suite, where an execu-

tion plan changes because I create a bitmap index on a column that appears in the select list

of a query—I’m not even going to try to think about why that one happens.)

The problem with the descending index is that the existence of the index has caused the

optimizer to generate a surprise extra predicate, which we can see if we switch from autotrace

to dbms_xplan:

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | 1 | 230 | 33 |

|* 1 | HASH JOIN | | 1 | 230 | 33 |

|* 2 | TABLE ACCESS FULL | T1 | 15 | 3330 | 16 |

| 3 | TABLE ACCESS FULL | T2 | 3000 | 24000 | 16 |

--

Predicate Information (identified by operation id):

 1 - access("T2"."N1"="T1"."N1" AND

 SYS_OP_DESCEND("T2"."N1")=SYS_OP_DESCEND("T1"."N1"))

 2 - filter("T1"."N2"=45)

In 9i, the optimizer includes the sys_op_descend() predicate in the selectivity calculation.

In 10g, the optimizer recognizes (I assume) that the sys_op_descend() predicate is the same as

t2.n1 = t1.n1, and therefore doesn’t double-count the effect.

An Alternative Viewpoint
If you feel a little uncomfortable with the way the previous pages have been describing and

calculating join cardinalities, there is another way of looking at what goes on. It doesn’t change

what happens, or how the results drop out; it is just a different mental image that you could use

to help you understand the way the arithmetic works.

Consider the query from join_card_01.sql:

select

 t1.v1, t2.v1

from

 t1,

 t2

304 C H A P T E R 1 0 ■ J O I N C A R D I N A L I T Y

where

 t1.filter = 1 -- 25 values

and t2.join1 = t1.join1 -- 50 / 30 values

and t2.filter = 1 -- 50 values

;

Apply just the simple filtering predicates and do a Cartesian join with the resulting rows.

We have 400 rows extracted from table t1, and 200 rows extracted from t2, so the Cartesian join

is 80,000 rows.

But there is one more predicate to apply to reduce that 80,000 rows down to the final result

set, the predicate that represents the join condition. To apply this predicate, we look at it in two

different ways, namely:

t2.join1 = :unknown_value

or

:unknown_value = t1.join1

Then we simply pick whichever one of these two conditions is the most selective. And, as

you learned in Chapter 3, the selectivity of column = :bind_variable is either the density or 1/

num_distinct.

If there are multiple conditions, we simply apply the rules (which we also saw in Chapter 3) for

combining predicates—allowing for the special sanity checks introduced by 10g—and the

answer drops out.

I’d like to thank Benoit Dageville of Oracle Corporation for giving me this insight in a

conversation we had at Oracle World 2004. I’ve found it a very helpful way to visualize some of

the effects of different conditions.

Summary
If you are still working with 8i, the formulae supplied by MetaLink for join selectivity and join

cardinality are correct, although the note could be enhanced to point out that

• The selectivity formula simply has to be repeated across all columns of an N-column

join.

• A single join predicate involving an unbounded range-based test uses a fixed 5%

selectivity.

• A single join predicate involving a bounded (between) range-based test uses a fixed

0.25% selectivity.

The join selectivity formula in a multitable join always uses the base table selectivity from

the table that is explicitly named in the predicate (which is not necessarily the selectivity that

was used in calculating the previous intermediate result). This means that you can make a legal

textual change to rearrange the joins between tables, and find that the computed cardinality

has changed.

When you move from 8i to 9i, the basic formulae supplied by MetaLink still work in many

cases, but there is an alternative strategy for handling nulls, which caters to them in the join

C H A P T E R 1 0 ■ JO I N C A R D I N A L I T Y 305

cardinality formula rather than in the join selectivity formula. This means that some queries

(multitable joins along the same nullable column, in particular) may produce a higher computed

cardinality after the upgrade and therefore may change their execution plans.

When you upgrade to 10g, two new strategies are employed for multicolumn joins—the

multicolumn sanity check, and the concatenated index sanity check. This means that the

cardinality of multicolumn joins may again change (increase) on upgrade.

There are still cases where you can change the join cardinality by adding extra predicates

that are technically redundant. In some cases, it will not always be intuitively obvious that the

predicates are redundant. On the other hand, there are some cases of code fixes in 9i and 10g

that identify some of the classic cases of redundant predicate and ignore them. This means that

some queries may show a dramatic increase in join cardinality when you upgrade from 8i to 9i

or 10g.

Joins involving badly matched tables, may produce better cardinality calculations, hence

better plans, if you create histograms on one, or both, ends of the worst-matching columns.

Test Cases
The files in the download for this chapter are shown in Table 10-5.

Table 10-5. Chapter 10 Test Cases

Script Comments

join_card_01.sql Simple case demonstrating the join selectivity and cardinality formulae

join_card_02.sql Demonstration that the formulae still work with nulls in the join columns

join_card_03.sql Demonstration that the formulae still work with nulls in the join
columns and filter columns

join_card_01a.sql Example of the “wrong” num_distinct being used in the formula

join_card_04.sql Two join predicates with an AND between them

join_card_05.sql Two join predicates with an OR between them

join_card_06.sql Effects of variation in low/high values of the joined column

join_card_07.sql Effects of transitive closure (predicate generation) on joins

join_card_08.sql Joining three tables

join_card_09.sql Changes in null treatment—three-table join

type_demo.sql Effects of storing all reference data in a single table

join_card_10.sql Is this a bug, a side effect, or three simultaneous special cases?

descending_bug.sql A bug in cardinality where descending indexes exist

delete_anomaly.sql A strange example of cardinality changing

setenv.sql Sets a standardized environment for SQL*Plus

307

■ ■ ■

C H A P T E R 1 1

Nested Loops

After working out the cardinality of a join, the optimizer then has to consider the cost of

the three ways of performing that join, nested loop, hash, or merge join. As I pointed out in

Chapter 9, the star join and star transformation are not join mechanisms, they are join strate-

gies, so they don’t get a mention from this point onwards. The next three chapters examine

each of the three join mechanisms in turn, first examining the operation and then the cost

calculations.

As we go through the mechanisms, it is important to remember that several contradictory

effects may appear. The run-time engine may not do exactly what the execution plan appears

to say; the cost calculation may also not tally with what the plan seems to say, and the cost

calculation may not tally with what the run-time engine actually does.

We start with the nested loop join, as that is the easiest to visualize, and the one whose cost

calculation is best known.

Basic Mechanism
Consider the following query:

select

 t1.cola,

 t2.colb

from

 table_1 t1,

 table_2 t2

where

 t1.colx = {value}

and t2.id1 = t1.id1

;

If we tried to write the code to emulate a nested loop join on these two tables, it might look

something like the following (and, alas, people frequently do write PL/SQL or Java code that

loops exactly like this):

for r1 in (select rows from table_1 where colx = {value}) loop

 for r2 in (select rows from table_2 that match current row from table_1) loop

 output values from current row of table_1 and current row of table_2

 end loop

end loop

308 C H A P T E R 1 1 ■ N E S T E D LO O P S

Looking at this code, you see two loop constructs. The outer loop works through table_1

and the inner loop works (possibly many times) through table_2. Because of the structure of

this pseudo-code, the two tables in a nested loop are commonly referred to as the outer table

and the inner table. The outer table is also commonly referred to as the driving table (although

I don’t think I’ve ever heard the inner table referred to as the driven table).

“OUTER” AND “INNER” TABLES

The terms outer and inner are really only appropriate to nested loop joins. When talking about hash joins, you

ought to refer to the build table and probe table; and for merge joins, the terms first table and second table are

sufficient. However, you will find that the 10053 trace file always uses the terms outer and inner to identify

the first and second tables respectively in a join operation. I will revisit this point in the relevant chapters.

The execution plan for a nested loop join with an index on the inner table can have two

different forms from 9i onward: one when the optimizer uses the index on the inner table for a

unique scan, and another when the optimizer uses the index for a range scan. The second form

ceases to be an option, however, if the outer table is guaranteed to return a single row.

Execution Plan (9.2.0.6 autotrace - unique access on inner table (traditional))

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=324 Card=320 Bytes=11840)

1 0 NESTED LOOPS (Cost=324 Card=320 Bytes=11840)

2 1 TABLE ACCESS (FULL) OF 'DRIVER' (Cost=3 Card=320 Bytes=2560)

3 1 TABLE ACCESS (BY INDEX ROWID) OF 'TARGET' (Cost=2 Card=1 Bytes=29)

4 3 INDEX (UNIQUE SCAN) OF 'T_PK' (UNIQUE) (Cost=1 Card=1)

Execution Plan (9.2.0.6 autotrace - range scan on inner table (new option))

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=322 Card=319 Bytes=11803)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TARGET' (Cost=2 Card=1 Bytes=29)

2 1 NESTED LOOPS (Cost=322 Card=319 Bytes=11803)

3 2 TABLE ACCESS (FULL) OF 'DRIVER' (Cost=3 Card=319 Bytes=2552)

4 2 INDEX (RANGE SCAN) OF 'T_PK' (UNIQUE) (Cost=1 Card=1)

The second form of the nested loop join appeared in 9i, and represents a cunning optimi-

zation—which I understand is known as table prefetching—that can reduce the logical I/O

count (hence latching, and possibly physical I/O count) on larger nested loop joins.

C H A P T E R 1 1 ■ N E S T E D L O O P S 309

You will note that the way the costs are displayed in the new plan doesn’t reflect the modi-

fied form of the plan (or the notional saving in resources). The execution plan has simply moved

the reference to the second table (line 3 in the traditional plan) to a point outside the nested

loop (i.e., to line 1 in the new form of the plan). In principle, you might expect the costs and

cardinality of the new plan to look more like the following:

Execution Plan (Notional, with full disclosure of prefetch costing)

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=322 Card=319 Bytes=11803)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TARGET' (Cost=322 Card=319 Bytes=11803)

2 1 SORT (ROWID LIST) (Cost=??? Card=319 Bytes=???)

3 2 NESTED LOOPS (Cost=??? Card=319 Bytes=???)

4 3 TABLE ACCESS (FULL) OF 'DRIVER' (Cost=3 Card=319 Bytes=2552)

5 3 INDEX (RANGE SCAN) OF 'T_PK' (UNIQUE) (Cost=1 Card=1)

In fact, whichever form you see in the execution plan, the run-time engine may still use the

mechanism shown in the traditional plan—to date, I have only seen the execution engine use

the new mechanism in one very special case.

The examples I have picked to show you the plan structure comes from a test case that also

happens to show an interesting feature in later versions of 9i—both plans came from exactly

the same query (see script prefetch_test_02.sql in the online code suite), where the theoretical

access to the second table should have been a unique scan for a single row on the primary key

index.

The reported execution plan actually switched mechanisms as the number of rows in the

driving table changed—as you can see in the line with the TABLE ACCESS (FULL) OF 'DRIVER',

at 320 rows the traditional plan was reported, but at 319 rows the optimizer reported that it

would switch to a range scan so that it could use the new mechanism. This test case happens

to be an example of the one specific and unrealistic case where the new mechanism actually

operates at run time, and if you care to check the logical I/O and latch activity while running

the test case, you will find that there are some very clear changes in resource usage.

The script is in the online code suite, but you may find that you have to experiment to find

the break point every single time you try the test. The exact test is not reproducible, and prob-

ably depends on recent activity on your system (script prefetch_test.sql runs the tests on

autopilot, and prefetch_test_01.sql demonstrates that the effect depends on CPU costing

being enabled). When I examined the 10053 trace file for the two different plans, I was unable

to spot any difference anywhere that could explain why the optimizer had changed its choice

of plan. The test results were not reproducible on 10g.

There are two fairly standard pictures used to represent the nested loop join. Each has its

strengths and weaknesses as a tool for explaining what is going on. The first picture, shown in

Figure 11-1, simply connects rows from one table with rows from another, using arrows to indi-

cate direction of activity. In a monochrome diagram, this makes it easy to see the connection

between rows of one table and their partners in the other table.

310 C H A P T E R 1 1 ■ N E S T E D LO O P S

Figure 11-1. Nested loop join

The second picture, shown in Figure 11-2, includes a representation of working through

an index on the second table, because an index is usually involved in this way when there is a

nested loop around.

Figure 11-2. Nested loop join with index visible

Figure 11-2 gives us a visual hint of why the parameter optimizer_index_caching might be

an appropriate parameter to set for a typical OLTP system. This parameter defaults to 0 (for

C H A P T E R 1 1 ■ N E S T E D L O O P S 311

backward compatibility), and takes values from 0 to 100. It is used to indicate to the optimizer

the percentage of index blocks from the inner (second) table’s index that are likely to be cached

during nested loop joins.

OPTIMIZER_INDEX_CACHING

optimizer_index_caching is used to adjust the cost calculation for index blocks of the inner table in

nested loops and for the index blocks used during in-list iterators. It is not used in the calculation of costs for

simple index unique scans or range scans into a single table.

Given that OLTP systems often have joins where “a few rows” from the first table are used

to drive a join into the second table to pick up “a few rows” each, a value in the region of 75 is a

reasonable starting guess (stress the word guess) for typical OLTP systems. The dense packing

of the content in a typical index makes it seem reasonable that an indexed access path might

do a physical read on the first pass through the loop, but that physical read would have popu-

lated a buffer that subsequent passes could reuse.

The second picture also has the advantage that it allows us to visualize both the old and

new mechanisms for the nested loop.

The old mechanism finds the first row in the outer (driving) table, traverses the index, and

visits each of the matching rows from the inner table in turn; then repeats for the second and third

rows in the outer table. This results in the rows from table 2 being fetched in the order (a, a, a, b, b,

b, c, c, c), which may allow a subsequent order by clause to achieve a SORT (ORDER BY) NOSORT.

The new mechanism finds the first row in the outer table, traverses the index, and stops in

the leaf block, picking up just the relevant rowids for the inner table; then repeats for the second

and third rows in the outer table. When all the target rowids have been found, the engine can

sort them and then visit the inner table in a single pass, working along the length of the table

just once, picking the rows in whatever order they happen to appear—in this case (a, b, b, a, a,

c, b, c, a, c).

This may take fewer logical I/Os—the diagram suggests that the first two rows in the inner

table may be in the same block, which means they could be acquired with one consistent get,

rather than two. The mechanism may even result in fewer physical I/Os—that one block with

the first two rows may have been flushed from the buffer between the two visits that would be

needed using the traditional mechanism. On the down side, this strategy may mean that an

order by clause could need a sort that would not otherwise be necessary. Clearly, the choice of

plan needs to be cost-based; however, it may also be affected by a cache-monitoring routine

carried out by the CKPT (checkpoint) process—as event 10299 is described by the comment

“Trace prefetch tracking decisions made by CKPT.”

Looking at either picture, it is quite easy to see that a simple approximation to the cost of

performing a nested loop could be described by this rationale:

• What is the cost of getting all the required rows from the first table?

• How many rows will appear in the first table?

• What is the typical cost of finding related rows once in the second table, given the newly

available information I have from the current row in the first table?

312 C H A P T E R 1 1 ■ N E S T E D LO O P S

■Note An important detail that is often overlooked when people are thinking about nested loops is that we

have picked some columns from the first table before we start our search in the second table, so we may be

able to use more precise access paths into the second table. (There was a time when Oracle used to advise

prefixing of local indexes on partitioned table for exactly this reason—but that ceased to be an automatic

concomitant of partitioning a long time ago.)

With these three questions in mind, we can produce a very simple formula for the cost of

a nested loop, which is as follows:

 Cost of acquiring data from first table +

 Cardinality of result from first table * Cost of single visit to second table

For example, quoting a small section of a 10053 trace from 9i, we see the following on a

typical nested loop join calculation:

NL Join

 Outer table: cost: 14847 cdn: 4973 rcz: 35 resp: 14847

 Inner table: T2

 Access path: tsc Resc: 51

 Join: Resc: 268470 Resp: 268470

This translates as the serial cost (resc) of joining table t2 to the previous table (which may

be an intermediate result set from a prior join) is 268,470. This comes from

14,847 + -- cost of getting data from outer table

4973 * -- number of rows in outer table

51 -- cost of accessing inner table (t2) once

You will notice the two resp figures—these show the cost of using parallel execution, but

since the trace file came from a query where the degree of parallelism was one, this matches

the serial cost.

Worked Example
Looking back a few pages to the original example (prefetch_test_02.sql in the online code

suite), you may start to question whether this formula is actually correct. Here’s the (traditional)

execution plan again:

Execution Plan (9.2.0.6 autotrace)

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=324 Card=320 Bytes=11840)

1 0 NESTED LOOPS (Cost=324 Card=320 Bytes=11840)

2 1 TABLE ACCESS (FULL) OF 'DRIVER' (Cost=3 Card=320 Bytes=2560)

3 1 TABLE ACCESS (BY INDEX ROWID) OF 'TARGET' (Cost=2 Card=1 Bytes=29)

4 3 INDEX (UNIQUE SCAN) OF 'T_PK' (UNIQUE) (Cost=1 Card=1)

C H A P T E R 1 1 ■ N E S T E D L O O P S 313

Line 2 tells us that the cost of scanning the driver table was 3, with 320 rows returned.

Line 3 tells us that the cost of one trip to the target table was 2. Looking at line 4, we can

infer that that cost was made up of 1 for hitting the index, plus 1 for hitting the table itself.

Applying the formula, then, we should see

 Total cost = 3 + (320 * 2) = 643.

But the reported cost is 324—so what went wrong? The answer lies in a combination of

rounding errors and the way that intermediate results are reported.

I had CPU costing enabled for the example, with the following settings:

begin

 dbms_stats.set_system_stats('MBRC',8);

 dbms_stats.set_system_stats('MREADTIM',20);

 dbms_stats.set_system_stats('SREADTIM',10);

 dbms_stats.set_system_stats('CPUSPEED',500);

end;

/

This means, in particular, that the CPU runs at 500 MHz (or 500 million Oracle operations per

second) and that a single block read takes 10 milliseconds. Put another way, 5,000,000 opera-

tions equate to one single block read.

If you look at the output from a full report on the plan_table (which will include the I/O

costs and CPU costs as separate items), you will find the following figures (I have excluded

many details, including the cardinality from this output):

Execution Plan (9.2.0.6 - Queried from plan_table)

0 SELECT STATEMENT (all_rows) IO Cost = 322, CPU = 7010826

1 0 NESTED LOOPS IO Cost = 322, CPU Cost =7010826

2 1 TABLE ACCESS DRIVER (full) IO Cost = 2 CPU Cost = 68643

3 1 TABLE ACCESS TARGET (by index rowid) IO Cost = 1, CPU Cost = 21695

4 3 INDEX UNIQUE T_PK (unique scan) IO Cost = 0, CPU Cost = 14443

Check the I/O costs, and you see that they match the following formula:

322 (line 1) = 2 (line 2) + 320 * 1 (line 3)

Check the CPU costs, and you see that they match this formula:

7,010,826 (line 1) = 68,643 (line 2) + 320 * 21,695 (line 3)

 (actually it comes to 7,011,043, which is an error of 217 out of 7M)

Given that the optimizer equates 5,000,000 operations with one (single block) I/O, you

can now see what has happened in the autotrace report. Oracle has reported the line cost as

IO cost + CPU cost / 5,000,000:

Cost = IO Cost + Adjusted CPU cost

 324 = 322 + ceiling(7,010,826 / 5,000,000)

 2 = 1 + ceiling(68,643 / 5,000,000)

 1 = 0 + ceiling(21,695 / 5,000,000)

314 C H A P T E R 1 1 ■ N E S T E D LO O P S

So the simplified output from autotrace has introduced a point of confusion—it reports

only integer values; and the rounding strategy in 9i has made things worse—it always rounds

up. (The problem is much less visible in 10g, which rounds to the nearest integer and therefore

manages to produce self-consistent figures much more frequently.)

Sanity Checks
In Chapter 6, I mentioned that one of the things we would see in this chapter was the special

case where the standard formula for indexed access into a table is not used. The following

extract generates a slightly unusual data set, and then queries it with a simple two-table query

with a three-column join. (There are two related scripts in the online code suite—for compar-

ative purposes script join_cost_03.sql in the online code suite shows the same test case

before we fix the data to have the unusual distribution, and join_cost_03a.sql is the case with

the modified data.)

create table t1 as

select

 rpad('x',40) ind_pad,

 trunc(dbms_random.value(0,25)) n1,

 trunc(dbms_random.value(0,25)) n2,

 lpad(rownum,10,'0') small_vc,

 rpad('x',200) padding

from

 all_objects

where

 rownum <= 10000

;

--

-- The critical data fix - done only in join_cost_03a.sql

--

update t1 set n2 = n1;

commit;

create index t1_i1 on t1(ind_pad,n1,n2)

pctfree 91

;

create table driver as

select

 rownum id,

 ind_pad, n1, n2

from (

 select distinct ind_pad, n1, n2

 from t1

)

C H A P T E R 1 1 ■ N E S T E D L O O P S 315

;

alter table driver add constraint d_pk primary key(id);

-- Collect statistics using dbms_stats here

select

 t1.small_vc

from

 t1

where

 t1.ind_pad = rpad('x',40)

and t1.n1 = 0

and t1.n2 = 4

;

select

 /*+ ordered use_nl(t1) index(t1 t1_i1) */

 t1.small_vc

from

 driver d,

 t1

where

 d.id = 5

and t1.ind_pad = d.ind_pad

and t1.n1 = d.n1

and t1.n2 = d.n2

;

In the baseline test, there are 625 different combinations for the pair (n1, n2) in table t1, so

the driver table has 625 rows, but in the special test case where we copy n2 into n1, the driver

table has 25 rows. Since there are 10,000 rows in t1, and the (n1, n2) combinations are randomly

distributed, we can assume that there are 16 rows (10,000 / 625) per pair of values in the base-

line test, and 400 rows (10,000 / 25) in the modified test.

Because of the primary key constraint on the driver table, the optimizer “knows” that the

first predicate (d.id = 5) in the second query will result in precisely one row being identified in

the driver table.

To emphasize the degree of variation from the standard formula, the first query we test is

a single table indexed access into t1. According to the standard nested loop join formula, it is

the cost from this operation that should be multiplied by the cardinality from the driving table

when we switch to the two-table join. The plan we get from this single-table query is as follows:

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=14 Card=16 Bytes=928)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=14 Card=16 Bytes=928)

2 1 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=4 Card=16)

316 C H A P T E R 1 1 ■ N E S T E D LO O P S

Although we know that this cardinality of 16 is actually wrong, the plan seems to have

followed the standard cardinality formula for single table access quite correctly. To reprise the

working for selectivity:

• Selectivity of ind_pad = 1

• Selectivity of n1 = 1 / 25

• Selectivity of n2 = 1 / 25

• Total selectivity = 1 / 625

• Hence cardinality = 10,000 / 625 = 16

Similarly, we can check view user_indexes for the values for the blevel (2), leaf_blocks

(1,107), and clustering_factor (6,153), and put them into the standard cost formula:

Cost = blevel +

 ceiling(selectivity * leaf_blocks) +

 ceiling(selectivity * clustering_factor)

 = 2 + ceiling(1,107 / 625) + ceiling(6,153 / 625)

 = 2 + 2 + 10

 = 4 + 10 -- note the cost of the index (line 2 of the execution plan)

 = 14 -- the total cost of the table access (line 1 of the plan)

But look what happens when we generate the execution plan of the join. We know that we

are going to pick up just one row from the driver table, so the cardinality of the final result

should not be changed from the 16 that we got from the first query, and the cost ought to be

 Cost of acquiring the one row from the driver +

 1 (cardinality from driver) * 14 (cost as for single-table query)

Instead we see

Execution Plan (8.1.7.4 or 9.2.0.6, or 10.1.0.4 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=292 Card=16 Bytes=1712)

1 0 NESTED LOOPS (Cost=292 Card=16 Bytes=1712)

2 1 TABLE ACCESS (BY INDEX ROWID) OF 'DRIVER' (Cost=1 Card=1 Bytes=49)

3 2 INDEX (UNIQUE SCAN) OF 'D_PK' (UNIQUE)

4 1 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=291 Card=16 Bytes=928)

5 4 INDEX (RANGE SCAN) OF 'T1_I1' (NON-UNIQUE) (Cost=45 Card=16)

You will notice that this execution plan uses the traditional nested loop structure even in

9i and 10g—remember that one of the conditions I mentioned originally for the use of the new

structure was that the driving table should return more than one row.

The cardinality for the execution plan is indeed unchanged at 16, but look what’s

happened to the cost. The cost of the index line has jumped from 4 to 45, and the incremental

cost of visiting the table has jumped from 10 to (291 – 45 =) 246. Where did these numbers come

from?

A quick trip back to the view user_indexes tells us the answer:

C H A P T E R 1 1 ■ N E S T E D L O O P S 317

select

 blevel,

 avg_leaf_blocks_per_key,

 avg_data_blocks_per_key

from

 user_indexes

where

 table_name = 'T1'

and index_name = 'T1_I1'

;

 BLEVEL AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

---------- ----------------------- -----------------------

 2 44 246

• The cost of the index line is blevel + avg_leaf_blocks_per_key – 1.

• The incremental cost of the table line is avg_data_blocks_per_key.

In the special case of a join that uses equality on the entire index, the optimizer changes its

cost calculation to use the precalculated values stored in the user_indexes view (although I

cannot explain the appearance of that “minus 1”). And, as we saw in Chapter 6, these values are

based on knowing the actual number of distinct keys, rather than multiplying together the

individual selectivities of the column involved. So, in theory, this should give us a more realistic

value for the cost of the join.

Unfortunately, the calculation of cardinality in this example did not use the same option

(although, as we saw in Chapter 10, 10g does have a sanity check based on concatenated index

cardinality that sometimes comes into play), so there is a serious discrepancy between the

cost and the cardinality.

In a more complex case, this discrepancy could encourage the optimizer to put this pair of

tables at a very early point in an execution plan—it seems to get a small number of rows, and

they are expensive rows. Since the actual number of rows is much larger than the optimizer has

estimated, the knock-on effects further down the plan could be resource-intensive at run time.

In principle, of course, although this particular special case ought to be beneficial, it does

have an interesting, and sometimes painful, side effect. You may decide to add an extra column

to an index to increase precision and reduce the number of redundant rows that some queries

examine in a target table. Alternatively, you may choose to add a column to an index so that a

popular query can become an index-only query and not visit the underlying table. (We know,

of course, from Chapter 5 that this may have an undesirable effect on the cost calculations

because of its impact on the clustering_factor.)

But if you have other queries that used to use the entire index with equality but don’t use

the new column, those queries will suddenly change their costing arithmetic from the stored

result method to the product of selectivities method. And as we have just seen, there are some

indexes where this change could result in a very large change to the cost calculation, which

could result in a dramatically different execution plan for the join.

318 C H A P T E R 1 1 ■ N E S T E D LO O P S

Summary
The cost of a nested loop is simple to calculate—but there are special cases, and the most

dramatic special case produces yet another reason for checking carefully when you want to

add columns to indexes.

Test Cases
The files in the download for this chapter are as shown in Table 11-1.

Table 11-1. Chapter 11 Test Cases

Script Comment

prefetch_test_02.sql Demonstration that there are two different nested loop plans for a
unique access

prefetch_test.sql Automated sweep through 999 configurations

prefetch_test_01.sql Baseline test, without CPU costing to show that the plans don’t vary

join_cost_03.sql Demonstration of special case calculation of cost—baseline

join_cost_03a.sql Demonstration of special case calculation of cost—adjusted to show
special case

setenv.sql Sets a standardized environment for SQL*Plus

319

■ ■ ■

C H A P T E R 1 2

Hash Joins

Before saying anything about the method that the optimizer uses to estimate the cost of a

hash join, I shall describe the mechanics. There are two good reasons for doing this. First, the

mechanism is not commonly known; second, you have to know the mechanism before you can

hope to guess how the cost calculation works.

In all previous chapters, I have disabled CPU costing (the 9i system statistics feature) and

worked with a manual workarea_size_policy rather than using the automatic option intro-

duced in 9i. This is often a reasonable strategy to adopt because it doesn’t materially affect the

work that the optimizer does—until you get to hashing and sorting.

In the next two chapters, therefore, I shall be covering the four different options: CPU

costing on and off, with workarea_size_policy set to automatic or manual.

Since hash joins can operate at three levels of effectiveness (reported in v$sysstat under

optimal, onepass, and multipass workarea executions), this introduces a nominal 12 possibili-

ties to cover. I don’t intend to wade through all 12 of them in detail, but will cover the key points

of the different levels of effectiveness, and comment on critical differences that appear because of

the four different environmental options

Perhaps the most significant issue we have to resolve is the problem that the formula from

the 9.2 Performance Guide and Reference for the cost that I quoted in Chapter 1 does not

contain any obvious I/O-related components that allow for a hash join spilling from memory

to disk; in the absence of any solid information, we shall have to proceed by trial and error.

Another unfortunate detail we will have to face is that the different versions of the optimizer

can produce startlingly different costs for the same hash join under the same conditions.

Getting Started
When we do a hash join, we acquire one data set and convert it into the equivalent of an in-

memory single-table hash cluster (assuming we have enough memory) using an internal

hashing function on the join column(s) to generate the hash key.

We then start to acquire data from the second table, applying the same hashing function

to the join column(s) as we read each row, and checking to see whether we can locate a

matching row in the in-memory hash cluster.

Since we are using a hashing function on the join column(s) to randomize the distribution

of data in the hash cluster, you will appreciate that a hash join can only work when the join

condition is an equality. You could argue that not exists is another possible condition, but

this is really using an equality with the hope of failing.

320 C H A P T E R 1 2 ■ H A S H J O I N S

We refer to the first table as the build table (we “build” the in-memory hash cluster from

it), and we refer to the second table as the probe table (we “probe” the in-memory hash cluster

with it).

WHICH IS THE “OUTER” TABLE?

It is an unfortunate accident that there is no intuitive interpretation for the terms outer table and inner table for

a hash join (as there is with the traditional nested loop join).

It is probably for this reason that the manuals have apparently described the mechanism of the hash join

back to front for so long. At some stage, one of the manual writers must have assumed that the phrase inner

table simply meant “the first one.” Consequently, the manuals have stated for years that the inner table is used

to build the hash cluster—even though every other reference you will find to the terms inner and outer (e.g.,

in the description of nested loops, in the 10053 trace file, and in the pq_distribute hint) shows that the

expression inner table is supposed to identify the second table in the join order.

Let’s create an example so that we can see the different bits of this process in action.

As usual, my demonstration environment starts with an 8KB block size, locally managed

tablespaces, uniform extents of 1MB, manual segment space management, and (despite my

opening comments) system statistics disabled and a manual setting for the hash_area_size

(see script hash_opt.sql in the online code suite):

alter session set workarea_size_policy = manual;

alter session set hash_area_size = 1048576;

create table probe_tab as

select

 10000 + rownum id,

 trunc(dbms_random.value(0,5000)) n1,

 rpad(rownum,20) probe_vc,

 rpad('x',500) probe_padding

from

 all_objects

where

 rownum <= 5000

;

alter table probe_tab add constraint pb_pk primary key(id);

create table build_tab as

select

 rownum id,

 10001 + trunc(dbms_random.value(0,5000)) id_probe,

 rpad(rownum,20) build_vc,

 rpad('x',500) build_padding

from

 all_objects

C H A P T E R 1 2 ■ H A S H JO I N S 321

where

 rownum <= 5000

;

alter table build_tab add constraint bu_pk

 primary key(id);

alter table build_tab add constraint bu_fk_pb

 foreign key (id_probe) references probe_tab;

-- Collect statistics using dbms_stats here

select

 bu.build_vc,

 pb.probe_vc,

 pb.probe_padding

from

 build_tab bu,

 probe_tab pb

where

 bu.id between 1 and 500

and pb.id = bu.id_probe

;

Execution Plan (9.2.0.6 Autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=106 Card=500 Bytes=278500)

1 0 HASH JOIN (Cost=106 Card=500 Bytes=278500)

2 1 TABLE ACCESS (BY INDEX ROWID) OF 'BUILD_TAB' (Cost=42 Card=500 Bytes=15000)

3 2 INDEX (RANGE SCAN) OF 'BU_PK' (UNIQUE) (Cost=3 Card=500)

4 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=60 Card=5000 Bytes=2635000)

I have designed the sample data to demonstrate several points about hash joins. In particular,

I constructed the tables in a way that allows me to demonstrate the error in one commonly (or

perhaps carelessly) stated comment about hash joins. The hash join is almost invariably

described as a join mechanism that does tablescans, but this is not a necessity. As you can see,

my example acquires one of its data sets through an indexed access path.

Another of the comments that is made too casually is that a hash join is good for joining a

small table to a large table (and the terms small and large are rarely qualified). If you check the

statistics of these two tables, you will find that they are both the same size. The comment about

small and large tables should really be stated in terms of the small and large data sets you have

extracted from the tables—and even then you have to describe exactly what you mean if you

don’t want to be contradicted. The demonstration script includes a few variations on the query

to expand on these points.

So what has the optimizer decided to do with the query? Obviously one option would have

been to perform a nested loop join using the index on probe_tab(id) to collect the related row

from probe_tab as we acquired each row from build_tab; but the cost of using a nested loop

322 C H A P T E R 1 2 ■ H A S H J O I N S

was too high—the cost when hinted was 542. Similarly, we might have seen a merge join, but

again this would have been too expensive—the cost when hinted was 445.

To get a picture of how Oracle performs the join, you can imagine it starts by splitting the

SQL into two completely separate components:

select

 bu.id,

 bu.build_vc,

 bu.id_probe

from

 build_tab bu

where

 bu.id between 1 and 500

;

select

 pb.probe_vc,

 pb.probe_padding,

 pb.id

from

 probe_tab pb

;

The two components select the join columns and all the referenced columns in their select

lists, using any available predicates from the main query to restrict the row selection. In this

case, this mechanism allows the pseudo-query against build_tab to be reasonably selective,

but the pseudo-query against probe_tab has no row restrictions at all. This lack of restrictions

on the probe table explains why partition elimination often fails to occur when the second

table in a hash join is a partitioned table. Unless the optimizer decides to execute a preliminary

query (known as a pruning subquery) against the build table, or the decomposed query against

the probe table includes a reference to the partitioning column(s), then there is nothing to tell

Oracle how to eliminate partitions.

You will notice that I’ve included the ID column in the select list for build_tab. This seems

to be unnecessary, but the optimizer allows for it in the calculations, so I’ve put it there.

After generating the two pseudo-queries, the optimizer estimates the number of rows and

row size (hence total volume of data) of the two data sets. The cost and cardinality of the two

queries comes from the standard calculations. The bytes figure is derived from the cardinality

of the queries and (usually) the values from the column avg_col_len in user_tab_columns.

HOW BIG IS A “ROW”?

As a general rule, the figures for bytes in execution plans are derived from the avg_col_len columns of

user_tab_columns. The deprecated analyze command excludes the length byte(s) for the column, but the

call to dbms_stats.gather_table_stats includes the length byte(s). Since the choice of build table in a

hash join is affected by the size of the data sets involved, a switch from analyze to dbms_stats could (in

principle) change the order of a hash join, or even cause the optimizer to use a different join mechanism.

C H A P T E R 1 2 ■ H A S H JO I N S 323

For the special case of select * from table, the optimizer seems to use the avg_row_len from

user_tables as the row size if the statistics have been generated by dbms_stats, but sum(avg_col_len) if

the statistics have been generated by analyze. (The optimizer can identify how the statistics were generated

by checking the global_stats column of user_tables or user_tab_columns.)

If we check the column names and column lengths from the view user_tab_columns, we

get the results shown in Table 12-1.

So for build_tab, we have 500 rows at 30 bytes for a total of 15,000 bytes; for probe_tab, we

have 5,000 rows at 527 bytes for a total of 2,635,000 bytes—as we saw in the execution plan. If

you look closely at the execution plan, you will also infer that the output row size that the opti-

mizer is using is 557 (from 278,500 / 500)—which means it has simply added the lengths of the

input rows, and has not allowed for double-counting of the join columns.

The figures for bytes would change to 13,500 bytes, 2,620,000 bytes, and 275,500 bytes if

we switch from the dbms_stats package to the old analyze command.

After working out the data size, the optimizer identifies the smaller set as the build table,

and starts working on building a hash table. Since we have a hash_area_size of 1MB, and only

15,000 bytes of data, we can be confident that the hash table will fit in memory, and we won’t

have to spill to disk. This is what gives us a definition of a “small data set”—it is one that fits

entirely within the hash_area_size, even after allowing for some overheads.

The Optimal Hash Join

Hash joins fall into the category of workarea executions and are categorized from 9i onwards

as optimal, onepass, or multipass in v$sysstat where you can find the statistics 'workarea

executions - optimal', 'workarea executions - onepass', and 'workarea executions -

multipass'.

According to our estimates, the data we want from the build table is so small that it will

easily fit into the hash_area_size. This is effectively the definition of an optimal hash join.

As a simple overview of the optimal hash join, Figure 12-1 indicates how the join takes place.

Table 12-1. Calculating the Row Size

Table Column avg_col_len

(dbms_stats)

Total for Table

(dbms_stats)

avg_col_len

(analyze)

Total for Table

(analyze)

Build_tab Build_vc 21 20

Build_tab Id 4 3

Build_tab Id_probe 5 30 4 27

Probe_tab Id 5 4

Probe_tab Probe_padding 501 500

Probe_tab Probe_vc 21 527 20 524

324 C H A P T E R 1 2 ■ H A S H J O I N S

Figure 12-1. Optimal hash join

The steps are as follows:

1. Oracle reads the first data set and builds an array of “hash buckets” in memory. A hash

bucket is little more than a location that acts as the starting point for a linked list of rows

from the build table. A row belongs to a hash bucket if the bucket number matches the

result that Oracle gets by applying an internal hashing function to the join column(s) of

the row. The number of buckets in the hash table always seems to be an even power

of two (common values for small hash joins are 1,024 or 4,096 buckets). Although the

entire structure is really a complex collection of fixed arrays and linked lists, it is conve-

nient to think of the hash table as a square array of cells with the rows from the first

(build) table scattered randomly around the square.

2. Oracle starts to read the second table, using whatever access mechanism is most appro-

priate for acquiring the rows, and uses the same hash function on the join column(s) to

calculate the number of the relevant hash bucket. Oracle then checks to see if there are

any rows in that bucket—this is known as probing the hash table.

3. If there are no rows in the relevant bucket, Oracle can immediately discard the row from the

probe table. If there are some rows in the relevant bucket, Oracle does an exact check on the

join column(s) to see if there is a proper match. You will recall from Chapter 9 that it is

always possible for two different input values to a hashing function to collide on the same

output value. Since it is possible for rows with different values in the join column(s) to be in

the same hash bucket, we have to do the exact check. Any rows that survive the exact check

can immediately be reported (or passed on to the next step in the execution plan).

C H A P T E R 1 2 ■ H A S H JO I N S 325

There is an important difference between Oracle’s approach to acquiring memory for hashing

compared to its approach for sorting. As you might guess from the comments about hash collisions

in step 3, the hash join works most efficiently (as far as CPU is concerned) if there is at most one

row in any hash bucket, so Oracle demands a huge fraction of the hash_area_size as soon as

the hash join starts so that it can create a large number of buckets, as this helps to minimize

hash collisions.

THE BACKWARDS NESTED LOOP

If you are familiar with single-table hash clusters, you will realize that an optimal hash join is really just a back-

to-front nested loop into a dynamically created single-table hash cluster. We build a single-table hash cluster

in local memory from the rows selected from build table, and then, for each row selected from the probe table,

check that hash cluster by hash key.

The main benefit of an optimal hash join is that the build table is transferred into local memory, rather

than being a real single-table hash cluster in the buffer cache. This means that the latch, buffer, and read

consistency costs that normally occur on a table access simply don’t appear as we probe the hash table.

Given that we have managed to produce an optimal (i.e., in-memory) hash join in this

case, it seems reasonable that the final cost of the query (106) that we see in the execution plan

would be as follows:

• The cost of acquiring data from the build table (42), plus

• The cost of acquiring data from the probe table (60), plus

• A little extra cost to represent the CPU cost of performing the hashing and matching.

Nevertheless, an increment of four in the cost for such a small amount of CPU work might

be considered a little suspect (especially since we have not enabled CPU costing anyway). And

in fact this example is a little deceptive, because the hash_area_size (1MB) is very much larger

than the size of the build table data set (15KB).

The Onepass Hash Join

Of course, things can be a little more complex, as we can see if we change our tables to increase

the size of columns and select longer columns so that both data sets are too large to fit into the

hash_area_size (see script hash_one.sql in the online code suite). The significant changes to

the code and the resulting plan are shown here:

create table probe_tab as

select

 10000 + rownum id,

 trunc(dbms_random.value(0,5000)) n1,

 rpad(rownum,20) probe_vc,

 rpad('x',1000) probe_padding

from

 all_objects

326 C H A P T E R 1 2 ■ H A S H J O I N S

where

 rownum <= 10000

;

create table build_tab as

select

 rownum id,

 10001 + trunc(dbms_random.value(0,5000)) id_probe,

 rpad(rownum,20) build_vc,

 rpad('x',1000) build_padding

from

 all_objects

where

 rownum <= 10000

;

-- Collect statistics using dbms_stats here

select

 bu.build_vc,

 bu.build_padding, -- extra length in build row

 pb.probe_vc,

 pb.probe_padding

from

 build_tab bu,

 probe_tab pb

where

 bu.id between 1 and 2000 -- more rows in build set

and pb.id = bu.id_probe

;

Execution Plan (9.2.0.6 Autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1127 Card=2000 Bytes=4114000)

1 0 HASH JOIN (Cost=1127 Card=2000 Bytes=4114000)

2 1 TABLE ACCESS (FULL) OF 'BUILD_TAB' (Cost=255 Card=2000 Bytes=2060000)

3 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=255 Card=10000 Bytes=10270000)

We can do the same arithmetic with the values from user_tab_columns to discover that the

bytes figures are indeed number of rows * sum of column lengths—giving us 2MB of data from

the smaller data set, and 10MB from the larger data set.

Because the “small” data set is now larger than the available memory, Oracle is clearly

going to have to adopt a more complex strategy for handling the hash table—and this problem

is echoed in the cost of the join (1,127), which is now far more than the cost of the two tables-

cans (255) that are needed to acquire the data in the first place.

The difference in cost is largely the effect of the optimizer’s estimate of the increased I/O

that will occur at run time. Because the hash table is too big to fit into memory, some of it has

to be dumped to disk and subsequently reread. Moreover, a similar fraction of the probe table

C H A P T E R 1 2 ■ H A S H JO I N S 327

will also have to be dumped to disk and reread. Figure 12-2 indicates how the mechanism

might work if the required hash table was about four times the size of the available memory.

Figure 12-2. Onepass hash join

In this diagram, we see more of the components that are actually involved when Oracle

performs a hash join. These are also present in the optimal hash join, but I chose to ignore

them in my original diagram so that I could keep the picture as simple as possible.

The most important omission from Figure 12-1 was the (small amount of) memory reserved

for a bitmap representing the hash table at the rate of 1 bit per bucket in the hash table. When

a build row hashes to a particular bucket, the corresponding bit is set.

The rest of the hash_area_size is broken up into chunks (known as clusters or slots) of a

size dictated by the parameter _hash_multiblock_io_count (obsolete as of 10g). This parameter

always seemed to take the value 9 in earlier versions of Oracle, but is now much more dynamic,

and the value is set individually for each query as it is optimized.

■Note The hidden parameters _smm_min_auto_io_size and _smm_max_auto_io_size probably

ought to affect the hash I/O size from 9i onwards, but don’t seem to.

328 C H A P T E R 1 2 ■ H A S H J O I N S

In the diagram, you can see that some of these memory clusters have been used to create

the hash table, which has been sliced into four separate partitions (a word that is used to mean

far too many different things in Oracle). The number of partitions always seems to be a power

of two, and the number of partitions is chosen to leave a few memory clusters spare for juggling

the anticipated I/O that will be needed to dump the hash table to disk. (The bottom right hash

partition is split to show that it is made up of two chunks, one of which seems to be on its way

down to disk.)

Bear in mind that the hash table is really just a collection of linked lists—the image of parti-

tions as nice tidy squares with the same number of chunks is a visual convenience I am using

to try to show the “logical identity” of hash buckets in the hash table. At any one moment, each

partition could be made up of a different number of memory chunks.

You can get a lot of detail about how memory has been used by setting event 10104, the

hash join trace, before executing a test query. The trace for the query from script hash_one.sql,

for example, includes the following information that describes the components I have been

describing:

Number of partitions: 8

Number of slots: 13 -- 13 clusters at 9 blocks each

Multiblock IO: 9 -- number of blocks to a cluster

Block size(KB): 8 -- size of block

Cluster (slot) size(KB): 72 -- size of cluster in KB: 9 * 8KB = 72KB

Bit vector memory allocation(KB): 32 -- total memory for bitmap: 8 * 4KB = 32KB

Per partition bit vector length(KB): 4 -- memory per partition for bitmap

My hash_area_size was set to 1MB and, as you can see, Oracle decided to run with eight

partitions for the hash table, and has enough usable memory to juggle with 13 clusters of

72KB—for a total of 936KB. The rest is taken up by 32KB for the bitmap (at 4KB per partition)

and another 40KB, which is reported as a management overhead.

The order of activity is as follows:

1. The first data set is acquired and scattered into the hash table. As a bucket is used, the

corresponding bit in the bitmap is set.

2. As the memory fills up, clusters are dumped to disk. The dumping is done using a cautious

strategy that tries to keep as many complete partitions in memory for as long as possible.

When the build table is exhausted, it is possible that some partitions will still be held

completely in memory, while the rest have only a few (but at least one) clusters left in

memory. It may be that one partition has just a few clusters, in memory and the rest

have only one each. Whatever the outcome, Oracle will have a detailed map of where

the data from each partition can be found. Moreover, whenever a hash bucket has been

used (whether the relevant data items are in memory or on disk), the corresponding bit

is set in the bitmap—which is always held completely in memory. At this point, Oracle

tidies up the hash table, trying to get as many complete partitions into memory as pos-

sible and dumping any excess from other partitions to disk. As part of the rebuild,

Oracle will reserve some clusters (a minimum of one per partition) for processing the

probe table.

C H A P T E R 1 2 ■ H A S H JO I N S 329

3. Once the hash table has been tidied up, Oracle starts to acquire rows from the second

data set, applying the same hash function to the join column(s) of each row. The result

of the hash function is used to check the relevant bit in the bitmap (a detail I chose to

ignore in my description of the first example).

4. Oracle takes one of several possible actions, depending on the result of the test.

4a)Event: The bit is clear (0).

Action: There is no match, and the row is discarded.

4b)Event: The bit is set (1), and the relevant hash bucket is in a partition that is in

memory.

Action: Check the hash bucket—if the probe row matches the build row, report it;

otherwise discard it.

4c)Event: The bit is set (1), but the relevant hash bucket is in a partition that is on disk.

Action: Put the probe row to one side. It may match a build row that is on disk, but it

would be too expensive to reread the relevant build partition at this point to check it.

The probe rows that are put to one side are collected in sets that match the partitions of the

hash table previously dumped to disk. Just as we used some spare clusters for accumulating

and dumping the hash table to disk, we use some spare memory clusters for accumulating the

probe rows that are possible matches, and dump them to disk as each cluster becomes full.

As we get to the end of the probe table, we are left with matched pairs of partitions from the

build table and probe table on disk.

At this point, Oracle has a complete map showing where all the data is and how many rows

there are in each partition, so it picks a matched pair of dumped partitions (one build, one

probe), and performs a hash join between them. As an extra optimization detail, Oracle can

choose to swap the roles of the two partitions at this point because it knows exactly how much

data there is in each partition, and there may be some benefit in using whichever is the smaller

one to build the new in-memory hash.

So, in the case of a high-volume hash join, the hash table can spill to disk, with the probe

table following it. The cost of the join ought to allow for the I/O performed in dumping the

excess to disk and reloading it for the second phase of the join. This type of hash join is recorded as

a onepass workarea execution because the probe dataset is reread from disk just once.

To generate a reasonable calculation of the cost of the join, we need to know the extra

volume of I/O, the form it takes (i.e., typical I/O size), and how the optimizer decides to cost

each I/O.

For example, in the worst possible case, Oracle might have to read the data sets from both

tables, dump most of the data to disk, and then reread it. So the cost ought, perhaps, to go up

by a factor of about three (corresponding to the fact that we have read, written, and reread

virtually the entire volume of data).

Of course, we have to allow for the fact that when we are dumping and rereading the parti-

tions, we may be able to use more efficient I/O than we did when we first collected the data. We

also have to allow for the fact that we won’t dump every row of our data, as some rows will be

joined and reported on the initial acquisition from the probe table.

If we check the execution plan for the sample query, we can see the following data sizes:

330 C H A P T E R 1 2 ■ H A S H J O I N S

 Size (bytes) of build data: 2,060,000

 Size (bytes) of probe data: 10,270,000

Since the hash_area_size in the test case is 1MB, and the volume of data from the build

table is nearly 2MB, we will have to dump about half the build table (1MB) to disk and reread it

later (another 1MB). Since we are going to dump about half the build table, it seems likely that

we will dump about half of the probe table (5MB) and reread it (another 5MB).

Given these figures, we might hope to see an extra cost representing that 12MB (which

equates to 1,536 blocks) of extra I/O. Of course, we saw from the 10104 trace file that the multi-

block I/O size was 9 blocks—so Oracle should have been dumping and rereading 9 blocks at a

time, for a total of about 170 I/O requests.

Unfortunately, the total cost of the join is 1,127. Since the two tablescans that went into the

first pass of acquiring the data had a cost of 255 each, this means we have to explain an extra

1,127 – 2 * 255 = 617 units of cost. This seems a little high compared to our “guesstimate.”

Clearly, the arithmetic done by the optimizer is not completely in sync with my descrip-

tion of how the hash join is working, and since my description is based to a fair degree on

observing actual I/O patterns, you can infer that the cost calculation doesn’t necessarily repre-

sent exactly what happens at run time.

Just to confuse the issue—if you run the query against 8i and 10g, you get costs of 1,079 and

1,081 respectively (the difference between these two results comes from the two table scans,

not the join itself—remember that you add one to tablescan costs from 9i onwards).

What has actually happened in this case is that the run-time engine really has done the

onepass join that we expected, but the optimizer has calculated that the join will require two

passes. Moreover, the run-time engine in 9i has used a cluster size of nine even though the

optimizer has based its calculations on a predicted cluster size of eight blocks (although in 8i

and 10g the optimizer based its calculations on a predicted size of nine blocks, leading to a

lower cost).

Then the cost model has assumed that the run-time engine will dump the whole probe

table, and reread the whole probe table—because it hasn’t worked out that we are doing a

onepass join, which has some inherent I/O benefits.

A final complication appears when it comes to deriving a cost for the multiblock writes and

reads used to dump and reload the partitions; the optimizer adopts the same strategy for

adjusting multiblock read figures that we saw in Chapter 2, and we can use the results we saw

for tablescans to calculate the costs of hash joins. Because the optimizer is predicting the

cluster size as eight blocks in the 9i calculations, it is using the value 6.588 to do the arithmetic

for the cost.

This issue highlights one of the difficulties of working out how the optimizer has derived

the cost of a hash join. We don’t know what cluster size the optimizer thinks it will be using—

it’s not one of the figures that’s printed in the 10053 trace—so we don’t know how many blocks

the optimizer factors into a single I/O.

Moreover, we cannot guarantee that the code in the run-time engine follows the assump-

tions built into the optimizer—so even if we try to fine-tune memory to get the right cost, we

can’t guarantee that the run-time engine will behave for us anyway.

Untangling the oddities and conflicting bits of information, we can finally work out that

the value of 617 can be derived as follows:

C H A P T E R 1 2 ■ H A S H JO I N S 331

Size of large data set = 1,269 blocks -- from column sizes and row counts

Size of small data set = 255 blocks -- from column sizes and row counts

Cluster size (predicted) = 8 -- inferred, after the event

I/O size used for calculation = 6.588 -- adjustment as described in Chapter 2

Probe passes = 2 -- as reported in 10053 trace file

Then

cost =

 (probe passes + 1) * round(1,269/6.588) + round(255/6.588) =

 3 * 193 + 39 =

 579 + 39 =

 618 -- as required (with a little rounding error)

You’ll notice that the optimizer seems to have allowed for dumping and rereading the

probe partitions—it used probe passes + 1 in the calculation—but only caters to the cost of the

hash table once. I don’t know why. (You’ll also notice that I could have made a better choice

about where to do my rounding to make the numbers come out exactly right—but there’s

always a little room for error in the rounding and print formatting routines that go into the

10053 trace.)

Just to confirm that this hypothesis is correct, and not just a one-off lucky chance, we can

run the calculations for 8i and 10g. With a hash_multiblock_io_count of 9, the optimizer will

use the value 7.12 in the calculations. Bear in mind that we are looking for a total cost of 1,081

(in 10g)—which means that when we factor out the cost of the tablescans, the hash join

component will be 1,081 – 510 = 570. (The result is the same for 8i once we allow for the slightly

reduced tablescan cost: 570 = 1.079 – 508.)

Sure enough:

 (probe passes + 1) * round(1,269/7.12) + round(255 / 7.12) =

 3 * 178 + 36 =

 570 -- as required

If you want to test the arithmetic further, you can rerun hash_one.sql with different values

for the hash_multiblock_io_count and watch the hash join cost change. Note that the parameter

became hidden in 9i, so the syntax for setting the parameter will change:

alter session set "_hash_multiblock_io_count" = 4; -- 9i syntax

alter session set hash_multiblock_io_count = 4; -- 8i syntax

Type very carefully when testing this feature with 9i; the 8i syntax does not produce an

error in 9i, but the value is silently ignored.

The Multipass Hash Join

Let’s look a little more closely at the most degenerate case where the available hash_area_size

is much too small (or the statistics were sufficiently inaccurate that the optimizer made a very

bad choice of the number of partitions needed for the hash table).

332 C H A P T E R 1 2 ■ H A S H J O I N S

For the purposes of explanation, imagine you have 4MB of build data that needs to be scat-

tered into a hash table, but the hash_area_size has been set so that there are only nine blocks

(72KB) available for building the hash table.

Oracle will (probably) pick a cluster size of one, and build a hash table of four partitions,

nominally two clusters per partition, with one spare block left for I/O. As each block in the hash

table fills, it will be dumped to disk. At the end of the build phase, there will be four build parti-

tions on disk, each about 1MB in size, and Oracle will have tidied up its memory so that the

only data left in memory will be a few blocks from the first build partition.

At this point, the run-time engine knows that it is going to have to dump four partitions

from the probe table to disk. So it has to reserve (at least) four blocks in memory, one for each

probe partition, plus (at least) one spare block to read the probe table. So the in-memory hash

table will be restricted to a maximum four blocks—to handle a partition of 1MB!

The probe pass begins, and rows are read from the probe table. As with the onepass hash

join, Oracle can discard a row because the bitmap shows no matches, check the row against the

in-memory data (either reporting or discarding it) when the bitmap shows a possible match

and the relevant hash bucket is in memory, or put the row aside if the bitmap shows a possible

match, but the relevant bucket is on disk.

When the first probe pass is complete, some rows will have been reported (the ones that

found a match in the four blocks of the build table we had in memory), and there will be four

probe partitions dumped to disk, one for each of the build partitions previously dumped to disk.

This is where things get nasty. Oracle is going to do a hash join between each pair of build

and probe partitions. But each build partition is about 1MB, and there is only enough memory

to reload a few blocks at a time. Since we have nine blocks to play with, and since we now know

that we are joining partitions that are known to match, we have some room to maneuver—we

could use one block to hash the build partition, and eight blocks to read the probe partition; or

two blocks for the build partition and seven blocks for the probe partition; and so on. The more

blocks we use for the hash, the smaller the read size on the probe partition; the fewer blocks

we use for the hash, the larger the reads on the probe partition, but the more times we have to

repeat the process. Assume we use four blocks to hash the build partition.

Oracle reads four blocks from the first build partition, and scans the entire first probe partition,

joining where possible; then Oracle reads the next four blocks from the first build partition and

scans the entire first probe partition, joining where possible. If it takes 32 passes to get through

the whole of the first build partition, Oracle will have to scan the entire first probe partition

32 times.

And then Oracle goes on to the second pair of partitions and repeats the process. (This

hash operation is known as a multipass operation because after the data has been dumped to

disk, it is reread multiple times.)

If your hash_area_size is much too small, then the amount of I/O that takes place during

a large hash join can be extreme. In my hypothetical case, we might expect the I/O cost to be

about 34 times the cost of an optimal join, as we read the whole probe table, write (almost) all

of the probe table to disk, and then reread every partition of the probe table 32 times.

C H A P T E R 1 2 ■ H A S H JO I N S 333

MULTIPASS HASH JOINS

The current implementation of the hash join has a weakness that can appear only when you cannot perform a

onepass join and it takes several passes to read each build partition. Every time you read a few blocks from

the build partition, you scan the entire matching probe partition.

Ideally, you would hope that the run-time engine would detect this problem as it came to the end of the

first pass. After all, it has collected exact details of the volume of data in each pair of partitions (one build, one

probe), and knows how many “subpartitions” each partition would have to be split into to allow each pair of

subpartitions to complete in a single pass.

In principle, the run-time engine could work out a mechanism of “recursive” hashing, applied to each

partition in turn. The code would have to read a single build partition, hashing into a suitable number of

subpartitions (such as the next power of two above the known number of passes required for the partition).

The same split would have to be done to the probe partition—but this could be done while attempting to join

to the first subpartition. With a strategy like this, the total I/O would be limited to a fixed amount.

Ignoring some of the boundary details: we read the build table, dump it to disk once in partitions, reread

it and dump it to disk in subpartitions, and then reread each subpartition to do the join. We have also read the

probe table, dumped it in partitions, reread it and dump it in subpartitions, and then reread each subpartition

once. This looks like a better bet than having to reread the probe partitions multiple times because the build

partitions are too big to be held in memory. (There is clearly a break point at about two where there is no point

in trying to subpartition the hash table.)

Of course, on the downside, you have to worry about the extra complexity in the code, and the possibility

that this “recursive hash join” would have to be applied to the subpartitions, and their subpartitions, and so on.

And each time you descend into recursion, you have to take out more memory for mapping and other over-

heads—and since the multipass is only invoked when you are short of memory anyway, a recursive hash join

may not really be a sensible thing to do.

If you see multipass hash joins occurring—and this is only likely to occur in a few special-case big

jobs—you need to consider strategies for increasing the available memory, changing the join mechanism, or

redesigning the SQL.

Although I haven’t built a test case that matches the description exactly, script hash_multi.sql

in the online code suite gets quite close. It repeats the table definitions of script hash_one.sql,

but then forces a hash join to take place with a hash_area_size of 128KB—when the size of the

build table is about 2MB.

This is what happens to the execution plan:

Execution Plan (9.2.0.6 Autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=13531 Card=2000 Bytes=4114000)

1 0 HASH JOIN (Cost=13531 Card=2000 Bytes=4114000)

2 1 TABLE ACCESS (FULL) OF 'BUILD_TAB' (Cost=255 Card=2000 Bytes=2060000)

3 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=255 Card=10000 Bytes=10270000)

334 C H A P T E R 1 2 ■ H A S H J O I N S

Notice how the cost of the tablescans has (of course) not changed, but the cost of the hash

join has jumped from the onepass cost of 1,127 to a multipass cost of 13,531.

The optimizer can always work out (in principle) how many partitions would be needed to

achieve a onepass hash join. But if the hash_area_size is too small to allow that many parti-

tions to be created—remember that each partition needs at least one block of memory at all

times—then the optimizer will recognize that a multipass join is required, and be able to work

out how many passes will be required per probe partition. If you call the number of passes N,

then the excess cost of the multipass join will be the cost of writing out the possible match rows

once, and rereading them N times.

The detail from the 10104 trace that shows us the size of our problem is the section

labelled as Phase 2. Picking out the relevant bits from the trace file produced by the script

hash_multi.sql, we find the following:

*** HASH JOIN GET FLUSHED PARTITIONS (PHASE 2) ***

Getting a pair of flushed partions.

 BUILD PARTION: nrows:256 size=(33 slots, 264K)

 PROBE PARTION: nrows:260 size=(34 slots, 272K)

*** HASH JOIN BUILD HASH TABLE (PHASE 2) ***

Number of blocks that may be used to build the hash hable 10

Critically we can see from the figures that we need 33 slots (which in this case also means

33 blocks as the starting section of the trace reported that the slot [cluster] size was 1 block) and

we can compare this with the number of blocks (just 10) that may be used to build the hash

table. (Yes, it did say “hash hable” and “PARTION” in the trace file—trace files are not for end

users to see, so no one in Oracle development is going to rush to correct spelling mistakes.

There are more important things to do.) Consequently we are going to have to split each build

partition into four sections, reloading them one at a time, and scan each probe partition four

times. This tells us that we need, at the very minimum, to increase our hash_area_size by a

factor of about four—or at least 3.3—to avoid a multipass hash join.

This observation is confirmed all the way down the trace file as Oracle reports the amount

of work it has done and the amount of work left to do. Extracting the critical details for the first

pair of partitions (i.e., one build partition, one probe partition), we see groups of lines like

the following:

Number of rows left to be iterated over (start of function): 256

Number of rows iterated over this function call: 78

Number of rows left to be iterated over (end of function): 178

...

Number of rows left to be iterated over (start of function): 178

Number of rows iterated over this function call: 78

Number of rows left to be iterated over (end of function): 100

...

C H A P T E R 1 2 ■ H A S H JO I N S 335

Number of rows left to be iterated over (start of function): 100

Number of rows iterated over this function call: 78

Number of rows left to be iterated over (end of function): 22

...

Number of rows left to be iterated over (start of function): 22

Number of rows iterated over this function call: 22

Number of rows left to be iterated over (end of function): 0

Each one of these blocks of text tells us that we have read another little section of the first

build partition, and scanned the entire corresponding probe partition.

As before, we can say that the cost of the hash join ought to represent the fact that we have

done so much extra I/O, and the optimizer ought to be able to work out roughly how much

I/O that is.

Again, it’s a little difficult finding the right numbers when we work backwards from the

activity.

In this case, the final cost was 13,531. The initial tablescan costs totaled 510. So the incre-

mental cost of the join was 13,021. We know that we had to dump about 2MB for the build table

(i.e., most of it), and 10MB of the probe table (again, most of it). We then had to reread the build

table once (even though we read it in four separate pieces, we read each piece just once), but

had to reread the probe table four times. So the total extra I/O was 2MB (written) + 2MB (read)

+ 10MB (written) + 4 * 10MB (read) = 54MB = 6,912 blocks.

Even though the “multiblock” direct read size in this case was just one block, the incre-

mental cost has to be too high by a factor of about two—how can you manage to get a cost of

13,021 from a total of 6,912 I/Os?

In fact, as we saw with the onepass hash, the optimizer has got the numbers wrong. We

saw four passes against each probe partition in the 10104 trace file, but the calculations in the

10053 trace file reported an estimated 16 passes. (In this case, we can assume quite happily

that the actual cluster size of 1 was also the predicted cluster size.)

Size of large data set = 1,269 blocks -- from column sizes and row counts

Size of small data set = 255 blocks -- from column sizes and row counts

Cluster size (predicted) = 1 -- inferred, after the event

I/O size used for calculation = 1.676 -- adjustment as described in Chapter 2

Probe passes = 16 -- as reported in 10053 trace files

Then:

cost =

 (probe passes + 1) * round(1,269/1.676) + round(255/1.676) =

 17 * 757 + 152 =

 12,869 + 152 =

 13,021 -- as required

Trace Files
Two trace files are critical to investigating the hash join. One is the standard CBO trace—event

10053; the other is the hash join trace—event 10104.

336 C H A P T E R 1 2 ■ H A S H J O I N S

It can also be quite instructive to enable 10046 at level 8 to watch for I/O wait states as the

join progresses—and from 9i onwards, you can synchronize the 10046 trace with the known I/O

that the hash join performs by setting the 10104 trace to level 12. This may be particularly

helpful, as the direct writes and reads produced by hash joins when they are dumping and

rereading partitions can use a form of asynchronous I/O that results in very few I/O waits

appearing in the 10046 trace file.

Event 10104

The particularly nice thing about the 10104 trace file is that the detail supplied is extremely

informative, and can give you a very good idea of how big your hash_area_size should be to get

from a multipass to a onepass join, or from a onepass to an optimal join.

We have already seen various bits of the 10104 trace, but here are four of the lines that

appear very early on in the 9i trace file (similar content with a slightly different presentation

appears in the 8i and 10g files):

Original memory: 131072

Memory after all overhead: 129554

Memory for slots: 122880

...

Estimated build size (KB): 2050

The Memory for slots tells you how much memory is available at maximum for creating

the in-memory hash table. The estimated build size tells you how much memory the optimizer

thinks you need for slots. In this case, if you want to do an optimal hash, it looks like you are

going to have to increase your hash_area_size from 128KB (of which about 120KB is available)

to something a little over 2MB.

If we know we don’t have enough memory to allow a hash_area_size large enough for

the optimal join, then we may be able to allocate enough for the onepass join—and as we

saw previously, we need only check the section of the trace file that describes how Oracle is

reacquiring data from disk:

Getting a pair of flushed partions.

 BUILD PARTION: nrows:256 size=(33 slots, 264K)

 PROBE PARTION: nrows:260 size=(34 slots, 272K)

*** HASH JOIN BUILD HASH TABLE (PHASE 2) ***

Number of blocks that may be used to build the hash hable 10

Number of rows left to be iterated over (start of function): 256

Number of rows iterated over this function call: 78

Number of rows left to be iterated over (end of function): 178

The number of times we see (end of function) before the number of rows left gets down

to zero is a good indicator of the scale factor we will have to use to multiple up the

hash_area_size to get from the multiplass to the onepass join. (This sequence happens once

per pair of dumped partition—so make sure you check for the worst case.)

You may find another important clue about the general performance of a hash join in a

section of the trace file that gives a partition-level summary of how successfully the rows have

been distributed:

C H A P T E R 1 2 ■ H A S H JO I N S 337

Partition Distribution

Partition:0 rows:247 clusters:32 slots:1 kept=0

Partition:1 rows:244 clusters:32 slots:1 kept=0

Partition:2 rows:208 clusters:27 slots:1 kept=0

Partition:3 rows:260 clusters:34 slots:1 kept=0

Partition:4 rows:260 clusters:34 slots:1 kept=0

Partition:5 rows:243 clusters:32 slots:1 kept=0

Partition:6 rows:282 clusters:37 slots:1 kept=0

Partition:7 rows:256 clusters:33 slots:7 kept=0

This is from the 9i trace file for hash_multi.sql. As you can see, the optimizer chose to split the

hash table into eight partitions. This section of the trace file then shows how many rows were

distributed to each partition and, as you can see, there is a little imbalance in the distribution—

one partition has only 208 rows, another has 282 rows. This is actually quite reasonable, and

nothing to be alarmed about.

However, if you can see massive imbalance between the partitions, this may be because

your data has an odd distribution with a few highly repetitive values in the join columns. This

may lead to excessive CPU consumption as the join takes place. For a multitable join, this may

give you a clue that you should try to rewrite the query in some way to rearrange the join order.

An imbalance is unlikely to be the result of multiple hash collisions with Oracle’s hashing

function. However, I believe there may be a second hashing function that the code can use to

rehash the data in memory if there are indications that the primary hashing function has produced

excessive collisions between nonmatching rows.

The other columns in this part of the trace are as follows:

• Clusters: The number of clusters (slots) needed to hold all the rows in that partition. As

I pointed out earlier, each cluster in this example is made up of exactly one block.

• Slots: The number of slots (clusters) from this partition that are currently in-memory.

This part of the trace file is reported as the build completes, but before Oracle has tried

to tidy up the hash table. As you can see, under pressure Oracle has been dumping parti-

tions zero to six ferociously, although it has to keep at least one slot per partition in

memory, and has only managed to keep seven slots of the 33 needed for partition seven.

• Kept: A flag set to zero or one to show whether or not the entire partition is still in memory.

If all partitions are marked as kept, then this is an optimal hash join. This flag isn’t

included in the 8i trace—you have to infer it by checking whether the clusters value

matches the slots value (which is labelled as in-memory slots in 8i).

This bit of the trace file gives another clue about how much you have to increase your

hash_area_size to get from a multipass hash join to a onepass hash join. We can see that the

best retention Oracle has managed is 7 slots compared to a worst case of 37 (the best partition

is partition 7, which needs only 33 slots and got 7 slots, but the worst case partition is partition 6

which needs 37 slots). We probably need to multiply the hash_area_size by roughly 37/7 = 5.3

to get to a onepass hash.

338 C H A P T E R 1 2 ■ H A S H J O I N S

Event 10053

The 10053 trace file is quite sparse in its information. Here, for example, is the 9i hash join

section for the accepted join order in hash_opt.sql—the traces for 8i and 10g are very similar:

HA Join

 Outer table:

 resc: 42 cdn: 500 rcz: 30 deg: 1 resp: 42

 Inner table: PROBE_TAB

 resc: 60 cdn: 5000 rcz: 527 deg: 1 resp: 60

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 4 Deg: 1

 hash_area: 128 (max=128) buildfrag: 129 probefrag: 329 ppasses: 2

 Hash join Resc: 106 Resp: 106

Key points in this section of the trace are described in Table 12-2.

Table 12-2. Explaining the Hash Join 10053 Entries

Item Description

Outer table A set of figures about the data acquired so far in the join order. In our
case, this is just the cost of getting 500 rows from build_tab.

Inner table A set of figures about the data needed from the latest table (or instanti-
ated view) in the join order. In our case, this is just the cost of getting
5,000 rows from probe_tab.

resc Cost for serial execution of a step.

deg Degree of parallelism of a step.

resp Cost for full parallel execution of a step.

hash_area Nominal value for hash_area_size in blocks. In 9i this is the minimum
that will be available to the join, dictated by hidden parameter
_smm_min_size (which is given in KB).

hash_area (max=) Nominal maximum value for hash_area_size in blocks. In 9i this is the
maximum that will be available to the join when running with the auto-
matic workarea_size_policy.

In principle this is dictated by the hidden parameter _smm_max_size (in
KB). However, although the manuals state that the maximum value for a
single workarea is 5% of the pga_aggregate target, the value reported
here will be 10% of the target (i.e., 2 * _smm_max_size). This seems to be
copying the original behavior of hash_area_size, which would default to
twice the sort_area_size. One part of the optimizer calculation seems to
follow this limit, but includes a boundary condition that switches the
calculation to use the minimum size. At run time, the 5% limit is obeyed—
but there are indications that it is a slightly flexible limit.

To further confuse the issue, there is another hidden parameter,
_pga_max_size, that defaults to 200MB, and this is the accounting limit
for the total PGA of a single process. The _smm_max_size is not supposed
to exceed half the _pga_max_size, but you won’t notice this unless your
pga_aggregate_target exceeds 2GB—at which point _smm_max_size hits
100MB and stops growing unless you start tweaking the _pga_max_size or
_smm_max_size directly.

C H A P T E R 1 2 ■ H A S H JO I N S 339

Headaches
It is quite easy to find anomalies in the hash join calculations, and before making any comments

about the differences between the various costing mechanisms, I’d like to show you a couple of

these anomalies so that you can appreciate the difficulty of micro-tuning the hash_area_size

(or pga_aggregate_target, for that matter).

Traditional Costing

Go back to hash_one.sql, and run the baseline query with a manual workarea_size_policy and

hash_area_size set to 1,100KB; then repeat the exercise with the hash_area_size set to 2,200KB

(see script hash_one_bad.sql in the online code suite):

Execution Plan (9.2.0.6 autotrace - Hash area size = 1,100 KB)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1081 Card=2000 Bytes=4114000)

1 0 HASH JOIN (Cost=1081 Card=2000 Bytes=4114000)

2 1 TABLE ACCESS (FULL) OF 'BUILD_TAB' (Cost=255 Card=2000 Bytes=2060000)

3 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=255 Card=10000 Bytes=10270000)

buildfrag The size of the build (first) data set in Oracle blocks. This is clearly wrong
for our optimal hash join in 8i (and 9i and 10g when they emulate 8i)—it
seems to be reported as hash_area + 1 for optimal hash joins. In our
example, the correct value is 3.

probefrag The size of the probe data set in Oracle blocks.

ppasses The number of probe passes needed to complete the join. Clearly incor-
rect in our optimal example, as we know we never dump to disk and
reread. But ppasses is never reported as zero.

This value seems to be for information only, as it has already been
catered to in the value for the hash join one ptn (see the next entry)—
and in most of my test cases, the value did not agree with what actually
happened at run time anyway.

Although in the case where we use the hash_area_size and do not enable
CPU costing (i.e., the traditional costing approach), the value for ppasses
seems to be derived from buildfrag / hash_area; in all other circum-
stances it never moves from the value 1.

Hash join one ptn Probably the most important number. This is notionally the unit cost of
dealing with one build partition. Despite the cost being labeled resc:
(which is normally interpreted as “serial cost”), the value is also used in
parallel queries, where the optimizer seems to multiply resc: by deg
before adding it into the total cost of the join.

For multipass joins, this number has a component that has been premul-
tiplied by the value of ppasses before being printed here.

Hash join For all (serial) joins, the total cost of the join seems to be Hash join one ptn
plus the costs of acquiring data from the inner and out table costs. In the
example, we have 106 = 4 + 60 + 42.

Table 12-2. Explaining the Hash Join 10053 Entries

Item Description

340 C H A P T E R 1 2 ■ H A S H J O I N S

Execution Plan (9.2.0.6 autotrace - Hash area size = 2,200 KB)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2769 Card=2000 Bytes=4114000)

1 0 HASH JOIN (Cost=2769 Card=2000 Bytes=4114000)

2 1 TABLE ACCESS (FULL) OF 'BUILD_TAB' (Cost=255 Card=2000 Bytes=2060000)

3 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=255 Card=10000 Bytes=10270000)

We’ve increased the memory available for the hash join, and the cost of doing the hash

join has gone up by a factor of 2.5. This isn’t what you would expect, but it’s something that

happens when your memory allocation is hovering on the boundary between the optimal and

onepass hash joins.

The most dramatic thing about this example was that the run-time trace also showed

Oracle switching, for no obvious reason, from multiblock I/O (cluster size is nine blocks) to

single block I/O (cluster size is one block) when the available memory was larger. Normally,

when the optimizer arithmetic does something strange, you find that the run-time mechanism

does something completely different anyway. In this case, the run-time engine and the opti-

mizer showed the same strange behavior.

Modern Costing

With the move to CPU costing and the use of dynamic workarea sizing in 9i, you may think that

such anomalies are a thing of the past. Script hash_pat_bad.sql in the online code suite shows

otherwise. It uses the same query as we had in hash_one.sql, enables system statistics, and uses

two different values of pga_aggregate_target. Again, it is possible to produce counterintuitive

results:

Execution Plan (9.2.0.6 autotrace - pga_aggregate_target = 20,000 KB)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=719 Card=2000 Bytes=4114000)

1 0 HASH JOIN (Cost=951 Card=2000 Bytes=4114000)

2 1 TABLE ACCESS (FULL) OF 'BUILD_TAB' (Cost=257 Card=2000 Bytes=2060000)

3 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=257 Card=10000 Bytes=10270000)

Execution Plan (9.2.0.6 autotrace - pga_aggregate_target = 22,000 KB)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=951 Card=2000 Bytes=4114000)

1 0 HASH JOIN (Cost=719 Card=2000 Bytes=4114000)

2 1 TABLE ACCESS (FULL) OF 'BUILD_TAB' (Cost=257 Card=2000 Bytes=2060000)

3 1 TABLE ACCESS (FULL) OF 'PROBE_TAB' (Cost=257 Card=10000 Bytes=10270000)

The setting I have used for the pga_aggregate_target in this example is rather small—even

the default is larger—but the test data set was also quite small. The anomaly can be re-created

with larger values for the parameter by using larger data sets.

The extra oddity here is that the only differences you can find in the trace files are in the

10053 trace, where the cost of doing the partition join changes. The 10104 trace files are identical.

This is another indication that the optimizer and the run-time engine don’t always use the

same model.

C H A P T E R 1 2 ■ H A S H JO I N S 341

Comparisons
Oddities exist in the costing—particularly in the boundary areas where the memory is in the

right ballpark for the switch between one level of join and the next. There are contradictions

between the model used by the optimizer code and the activity carried out by the run-time

engine. However, it is possible to get a rough idea of what’s going on, and make some guesses

about how data sizes and parameter settings make a difference. And with the aid of the 10053

and 10104 traces, it is possible to work out whether you can do some tweaking to make an

important query operate more efficiently.

At present, though, I don’t think that this micromanagement viewpoint is terribly impor-

tant. The real issue that most people have to face is the impact of migrating between versions

of Oracle, and deciding which features to enable. This is where problems are likely to occur. So

in this section, we will run a standardized test so that we can compare the behavior of the opti-

mizer in four different working environments.

The online code suite contains four scripts to help us compare the different behaviors.

Between them, they cover four separate combinations of options:

CPU costing disabled, manual hash_area_size allocation has_nocpu_harness.sql

CPU costing enabled, manual hash_area_size allocation has_cpu_harness.sql

CPU costing disabled, automatic hash_area_size allocation pat_nocpu_harness.sql

CPU costing enabled, automatic hash_area_size allocation pat_cpu_harness.sql

Of these, the first is the traditional 8i approach, the last is where I think your strategic

choice ought to be with 9i. Unfortunately, the results you get from hash join calculations vary

dramatically with your choice.

HASH_AREA_SIZE AND SHARED SERVERS

If you are mixing automatic workarea sizing with shared servers (once known as multithreaded servers—

MTS), then many of the details about the pga_aggregate_target do not apply until you get to 10g. Historically,

the memory for hash joins had to be in the UGA, which was kept in the SGA when you were running shared

server. In 9i, this is still true, and the hash_area_size still dictates the memory allocated by shared servers,

even though the allocation is then monitored by the newer workarea code. Strangely, the optimizer does not

know whether a piece of SQL is coming from a shared server or a dedicated server, so the calculations are

always based on the pga_aggregate_target approach—even when the available memory is limited by the

hash_area_size.

In 10g, the shared server hash area has managed to migrate out of the UGA into the PGA, and so its size is

dictated by the pga_aggregate_target. Note: in earlier versions of Oracle, you were advised to avoid using

shared servers for sessions doing long-running hash or sort operations—perhaps this warning is no long

relevant in 10g.

The four scripts basically do the same thing. Where I have enabled CPU costing, I have

used the following set of figures to emulate the arithmetic that the traditional I/O costing

would do:

342 C H A P T E R 1 2 ■ H A S H J O I N S

begin

 dbms_stats.set_system_stats('MBRC',6.59);

 dbms_stats.set_system_stats('MREADTIM',10.001);

 dbms_stats.set_system_stats('SREADTIM',10.000);

 dbms_stats.set_system_stats('CPUSPEED',1000);

end;

/

I have set the MBRC to 6.59 because that corresponds to the adjusted value that the optimizer

uses to cost tablescans (and index fast full scans) when the db_file_multiblock_read_count is

set to my usual test value of 8. I have then set the mreadtim and sreadtim to be (virtually) iden-

tical—which is one of the basic assumptions of the older I/O costing algorithms used by the

optimizer.

The scripts then generate an SQL script that calls a third SQL script (has_dump.sql or

pat_dump.sql depending on the driving script) many times.

■Caution The mechanism of scripts writing scripts then calling them is one that I consider to be extremely

dangerous on production systems—but it is occasionally convenient when testing.

The scripts that use manual hash_area_size allocation contain a line like this one:

alter session set hash_area_size = &2;

The scripts that use automatic hash_area_size allocation—i.e., the ones that have

workarea_size_policy set to automatic and rely on the pga_aggregate_target to control

the hash_area_size—contain a line like the following:

alter system set pga_aggregate_target = &2 scope = memory;

All the called scripts enable the 10053 trace and the 10104 trace, and use the

tracefile_identifier to make sure that each test generates its own suitably named trace file—

for example:

alter session set events '10053 trace name context forever, level 2';

alter session set events '10104 trace name context forever';

alter session set tracefile_identifier = 'pat_&1._&2';

■Note For a less resource intensive, though less informative, approach, I have also written four scripts that

simply cycle through values of hash_area_size—or pga_aggregate_target—generating execution

plans for a fixed statement; these scripts are in the online code suite as hash_stream_(a,b,c,d).sql.

C H A P T E R 1 2 ■ H A S H JO I N S 343

I had a bit of a problem deciding how to line up the figures from the hash_area_size tests

with those from the pga_aggregate_target tests.

According to the manuals, any individual workarea is limited to 5% of the

pga_aggregate_target, so obviously a pga_aggregate_target of 100MB should be compared

with a hash_area_size of 5MB.

On the other hand, when I set the pga_aggregate_target to 100MB, the 10053 trace

reported the hash area (max=) at 10MB, not 5MB. So in the end I decided to line the two sets of

figures up on the formula hash_area_size = 0.1 * pga_aggregate_target on the basis that this

was probably the value that the optimizer was using for most of its calculations.

On top of this, there was another little problem: the minimum legal value for

pga_aggregate_target is 10MB—which corresponds to 1MB for the hash_area_size calcula-

tions by my formula; however, the legal minimum for the hash_area_size is 32KB (although

this is ignored and the effective minimum seems to be 64KB). So my sets of figures don’t start

at the same place.

Finally, rather than reporting the actual cost of the query, I have subtracted the cost of the

two tablescans from the total cost, to give you the cost of the join itself.

Table 12-3 lists the costs of the baseline query for different feature sets at equivalent levels

of memory for the hash table—and yes, they are the right headings; the figures with CPU

costing enabled really do come out lower than the figures without.

Table 12-3. Costs Changing with Memory Allocation and Feature Usage

Target Size for

Hash Memory

Cost : Manual

No CPU Costing

Cost : Manual

CPU Costing

Cost : Automatic

No CPU Costing

Cost : Automatic

CPU Costing

128KB 13,021 658

256KB 6,965 408

384KB 3,455 1,242 ****

512KB 1,911 765

768KB 1,103 384

960KB 884 234

1,024KB 617 194 506 441

1,280KB 533 117 506 441

1,408KB 501 90 506 441

1,536KB 448 62 506 441

1,792KB 408 28 306 209

2,048KB 2,416 **** 2 506 **** 441 ****

2,560KB 789 2 506 441

3,072KB 392 2 506 441

3,584KB 255 2 306 209

4,096KB 186 2 306 209

344 C H A P T E R 1 2 ■ H A S H J O I N S

The first thing you notice is that the only two columns that bear any resemblance to each

other are the ones driven by the pga_aggregate_target. And even then it’s the trends that

match, not the actual values. Whatever change you make to your systems, whether it’s an

upgrade or enabling a feature, you are likely to run into some problems with dramatic swings

in hash join costs.

The second thing you notice is that, whichever option you choose for your database, there

are bugs in the code, or possibly flaws in the model. In every single column, you can find a case

(marked with the ****) where increasing the available memory for the hash join results in the

join itself being given a higher cost.

This seems to occur close to the boundary where the hash_area_size (or hash area (max=)

value) is about the same as the first data set—and the knock-on effect is that optimal hash joins

are probably given a cost that is too high. The cost of the join tapers off as the hash_area_size

grows, but only becomes negligible when the hash_area_size is very large.

PROBLEMS WITH PARTITION SIZING

We have already seen that the numbers used by the optimizer to do calculations (i.e., ppasses when it is

populated) and the numbers used by the run-time engine do not have to be the same. The strange large

increases in the costs shown in the table may be the result of the optimizer switching to a larger partition size

in its model as the memory grows—but finding that this results in more probe passes.

I have some cases where this surprising error also appears in the run-time trace. For example, with a

hash_area_size of 256KB, I have a join that runs with 16 partitions, and completes as a onepass join. When

I increase the hash_area_size to 320KB, the partition count drops to 8 (bigger) partitions—which makes

for more efficient I/Os—but the join switches to a multipass join.

If you enable CPU costing, but don’t enable the features of automatic workarea policy,

then the costing for onepass and optimal joins seems to be quite reasonable—even to the

extent that pure in-memory joins become effectively free of charge at just about the right point.

If your most important queries stick within this scale of operation, then this seems to be the

best possible option for your system (or at least the sessions that you expect to be doing hash

joins). However, there is clearly a problem when the first data set is large compared to the avail-

able hash_area_size—it looks as if the arithmetic to cater to multiple probe passes has fallen

out of the code path—and the cost of multipass joins seems to be much smaller than you might

expect. It is possible that this will result in hash joins being selected when there are better

4,608KB 306 209

5,120KB 306 209

5,632KB 190 104

6,144KB 190 104

Table 12-3. Costs Changing with Memory Allocation and Feature Usage (Continued)

Target Size for

Hash Memory

Cost : Manual

No CPU Costing

Cost : Manual

CPU Costing

Cost : Automatic

No CPU Costing

Cost : Automatic

CPU Costing

C H A P T E R 1 2 ■ H A S H JO I N S 345

options. Watch out for extremely inefficient hash joins if you have SQL where both data sets in

the join are very large.

When you switch to using the automatic workarea policy, the results look a little surprising.

On the downside, the code is clearly putting an unrealistically high cost on optimal hash joins.

In fact, the version using CPU costing did eventually drop the cost of the hash join to 0, but only

after I increased the pga_aggregate_target to nearly 1000MB, and I still haven’t been able to

work out why.

There is, however, an important difference between the models used for manual and auto-

matic policy that makes the newer model a much more appropriate one—although it may still

need some adjustment. Notice how the cost for the older model changes gradually (in most

cases) as the available memory changes, while the cost for the newer model stays constant for

a while, and then jumps.

This is quite reasonable—there are actually two good reasons why there should be sharp

steps in the cost of a hash join. Recall that the hash table is split into partitions, and partitions

are made up of clusters. The cluster is the unit size for I/O. The most important decisions that

the optimizer has to make about a hash join are how many partitions, and how big should the

clusters be.

Assume you have enough memory for N clusters—if you increase the memory by N blocks,

every cluster can become one block bigger, which means that the (multiblock) I/O operations

for dumping and rereading partitions will be a little more efficient. So that’s one reason for a step.

The second reason for the step could be justified by thinking about the partition dumping

and reloading that takes place. Assume at run time that it is possible to hold two build parti-

tions in memory as the build phase ends. In this case, only six out of eight probe partitions will

need to be dumped to disk and reloaded. Make the memory about 25% larger and perhaps

three partitions of the eight build partitions will be still be in memory at the end of the build—

so only five probe partitions will need to be dumped and reloaded.

Of course, as the memory size increases, the optimizer may decide to change the size of

clusters, or change the number of partitions in a balancing act designed to trade the size of I/Os

against the possibility of doing an optimal join, but in principle, these two considerations

ought to show up in the cost calculations.

In fact, if you look closely at the detailed figures for the traditional costing, and then cross-

reference with the 10104 trace files, you can see the effect of the cluster size changing. The

following is an extract from the hash_stream_a.sql set of figures:

Hash area KB Total Cost Hash Cost

------------ ---------- ----------

 512 1277 765

 520 1273 761

 528 1269 757

 536 1265 753

 544 1261 749

 552 1072 560 delta = -189 (see below)

 560 1069 557

 568 1066 554

 576 1063 551

 584 1060 548

 592 1057 545

 600 1054 542

346 C H A P T E R 1 2 ■ H A S H J O I N S

 608 1051 539

 616 1048 536

 624 1045 533

 632 1042 530

 640 1039 527

 648 1036 524

 656 1033 521

 664 927 415 delta = -106 (see below)

 672 925 413

 680 923 411

 688 920 408

 696 918 406

 704 915 403

As the hash_area_size increases, the cost of the hash drops steadily by a few units, but

every now and again it experiences a sharp drop (as highlighted by the delta lines in the

preceding listing). These step changes result from the optimizer allowing for a larger cluster

size as the hash_area_size increases. If you compare the 10104 trace with the 10053 trace, you

will usually find that each step change does actually correspond (closely, but not perfectly—

the run-time engine doesn’t follow the exact model used in the calculations) to the cluster size

increasing by a single block.

So the old model does allow for different sized I/Os—and a similar effect is visible in the

numbers when you enable CPU costing, even if you stick with the manual hash_area_size.

Since that’s the case, you might start to wonder how things change when you start to adjust the

system statistics—after all, the most significant effect of system statistics is to tell the optimizer

the size and relative time for multiblock reads. So which system statistics affect the cost of the join?

Unsurprisingly, if you change the CPU speed, then the cost of the join changes—though,

as you might expect, it won’t normally change very much.

The cost also changes if you change the relative values of mreadtim and sreadtim. Hash

joins do a lot of multiblock reads and writes (albeit direct path ones), so the I/O response time

should make a difference to the cost, and there are some indications that the optimizer simply

uses the mreadtim as the time for each of its cluster-sized I/Os, irrespective of the actual current

size of the cluster.

The value of the MBRC statistic also has an impact—but apparently only some of the time.

I haven’t been able to work this out yet, but I believe it is introducing yet another complication

into the decision about number of partitions and the cluster size, and since you can only see

the run-time values for this settings, not the optimizer predictions, it is very hard to work out

why the costs have changed with the value of MBRC when they do change, and why they haven’t

when they don’t.

So CPU costing has some relevance, and there is good sense in the stepped values we see

when using automatic workarea sizes. Nevertheless, the long intervals of constant cost you see

with the automatic workarea sizing are still a bit of a puzzle. The answer only becomes clear

when you examine the 10104 trace, and realize that the optimizer is making memory-based

decisions in a radically different way.

As we saw earlier on, the first values reported in the 10104 trace as follows:

C H A P T E R 1 2 ■ H A S H JO I N S 347

Original memory: 581632 -- 568 KB

Memory after all overhead: 710649 -- 694 KB

Memory for slots: 688128 -- 672 KB

I’ve picked this set of three values from a trace file that had the pga_aggregate_target set

to 11,440KB to highlight a couple of points. First, that the hash join did, indeed, start with 5% of

the pga_aggregate_target, but almost immediately decided that more was necessary. So it

seems the 5% is not an absolutely hard limit for hash joins.

The second point emerges when I extract the Memory for slots from several other trace

files with pga_aggregate_target varying from 10MB to 40MB—every single one up 33,200KB

(32.4MB) has the same 672KB, after which Oracle jumps to using 1,440KB for its slots. This

strategy is a reflection of the costing we saw with automatic workarea sizing enabled—the opti-

mizer gets the same cost time after time because it is planning to use the same amount of

memory time after time, irrespective of what you tell it is available.

When you switch to the modern technology, it really doesn’t matter what you have set the

pga_aggregate_target to, the optimizer is going to work out a sensible amount of memory for

doing the join in an efficient fashion, and is only going to vary the memory demands in large

steps, because basically it’s only large changes that make a worthwhile difference. In this

example, the big switch occurred because Oracle moved from using 7 blocks per partition to

15 blocks per partition—it’s the sort of change that might make the extra use of memory give a

reasonable return in terms of I/O performance.

Multitable Joins
If the description of the change in strategy isn’t enough to convince you that using the auto-

matic workarea sizing is a good idea, then let’s consider some more realistic examples of SQL.

Very few sites are content to stop at queries against just two tables, and when you start

executing multitable hash joins, your memory demand can go through the roof. Consider this

simple query (extracted from script treble_hash_auto.sql in the online code suite):

select

 /*+

 ordered

 full(t1) full(t2) full(t3) full(t4)

 use_hash(t2) use_hash(t3) use_hash(t4)

 swap_join_inputs(t2) swap_join_inputs(t3)

 */

 count(t1.small_vc),

 count(t2.small_vc),

 count(t3.small_vc),

 count(t4.small_vc)

from

 t1,

 t4,

 t2,

 t3

348 C H A P T E R 1 2 ■ H A S H J O I N S

where

 t4.id1 = t1.id

and t4.id2 = t2.id

and t4.id3 = t3.id

;

Execution Plan (9.2.0.6 Autotrace).

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=927 Card=1 Bytes=38)

1 0 SORT (AGGREGATE)

2 1 HASH JOIN (Cost=927 Card=343000 Bytes=13034000)

3 2 TABLE ACCESS (FULL) OF 'T3' (Cost=2 Card=70 Bytes=420)

4 2 HASH JOIN (Cost=923 Card=343000 Bytes=10976000)

5 4 TABLE ACCESS (FULL) OF 'T2' (Cost=2 Card=70 Bytes=420)

6 4 HASH JOIN (Cost=919 Card=343000 Bytes=8918000)

7 6 TABLE ACCESS (FULL) OF 'T1' (Cost=2 Card=70 Bytes=420)

8 6 TABLE ACCESS (FULL) OF 'T4' (Cost=915 Card=343000 Bytes=6860000)

The hints aren’t really necessary, but I’ve put in the complete set to demonstrate the

swap_join_inputs() hint that you can use with hash joins. The hints also highlight the fact that

sometimes the order that tables appear in the execution plan is a little counterintuitive.

In this example, Oracle will hash table t3 (line 3) into memory, then hash table t2 (line 5)

into memory, then hash table t1 (line 7) into memory. Then the scan of table t4 will begin.

Oracle will pick a row from t4 and probe t1; if the row survives, Oracle will probe t2; if the

row survives, Oracle will probe t3; if the row survives, then it will be passed to the sort (aggregate)

operation. A multi-table hash join can produce results extremely quickly—it is not (always)

necessary for the first hash join to complete before the second one can start.

Despite my description of Oracle hashing t3, then t2, then t1, and then probing with t4,

Oracle has obeyed my ordered hint. Look carefully at the order of the tables in the from clause

(t1, t4, t2, t3)—Oracle really has obeyed that hint. It goes like this:

• Join order [1]: t1, t4, t2, t3

• Now joining t4: (t1, t4)

• Now joining t2: ((t1, t4) , t2)

• But we use swap_join-inputs(t2), which means when we see t2 as the second table of a

hash join, we reverse the join order: (t2, (t1, t4))

• Now joining t3: ((t2, (t1, t4)), t3)

• But we swap_join_inputs(t3), which means when we see t3 as the second table of a

hash join, we reverse the join order: (t3, (t2, (t1, t4))), as we got in the execution plan.

The purpose of this section, though, was to describe the benefits of using the automatic

workarea_size_policy. So let’s run the query twice: once with a hash_area_size of 10MB, and

once with a pga_aggregate_target of 200MB (which is the equivalent of 10MB hash_area_size

according to the manuals, though the optimizer may use 20MB as the baseline figure in the

calculations according to my observations).

C H A P T E R 1 2 ■ H A S H JO I N S 349

Before we run the test, remember that this query needs three work areas—one for each

hash join that takes place—and they will all be allocated simultaneously. If you had an 11-table

join, you would need ten workareas if all the joins were hash joins (and one or two more if you

did some grouping and ordering following the join).

If I start a new session and check the session statistics after executing the query, these are

the results I get from my 9.2.0.6 instance with the manually controlled hash_area_size:

Name Value

---- -----

session logical reads 6,037

session uga memory max 12,948,124

session pga memory max 14,791,008

consistent gets 6,037

physical reads 6,015

whereas this is what I get with the automatic workarea_size_policy:

Name Value

---- -----

session logical reads 6,037

session uga memory max 3,058,432

session pga memory max 3,256,672

consistent gets 6,037

physical reads 6,018

The figures about logical and physical I/Os are there just to indicate that both queries did

the same thing. The critical numbers are the memory max figures. Notice how much more memory

the query used when we set a manual hash_area_size. Considering the three tables that were

hashed contained only 70 short rows each, that’s a lot of memory for hashing. (10g did even

better on the automatic sizing, restricting itself to no more than 1.5MB for the four-way join.)

When running with the manual hash_area_size, there are indications that Oracle immedi-

ately allocates at least half the hash_area_size at the start of a single hash join—and never

releases any of that memory even though each table that is hashed turns out to need only a

small amount of memory.

HOW GREEDY ARE HASH JOINS?

Various details of the hash startup mechanism may have been tweaked across versions, but the amount of

memory demanded for a multitable hash join can get very large as your hash_area_size grows—in early

versions of 8i there may even have been cases where 100% allocation took place on every join.

When running with a large pga_aggregate_target, it seems that Oracle can start with a

fairly large amount of memory allocated for hash table slots, and then release it when it is seen

to be unnecessary. As the hash join runs, you may see references to resizing operations scattered

through the 10104 trace file—resizing downwards in the following example:

Slot table resized: old=23 wanted=12 got=12 unload=0

350 C H A P T E R 1 2 ■ H A S H J O I N S

In other cases, of course, you will see Oracle starting small and growing the memory—

which is why in the previous section we saw the 10104 trace file starting with 672KB of memory

when there was a notional limit of at least 1.5MB or even 3MB—if Oracle had needed more to

avoid an expensive join, it would have resized the hash table upwards as it came to the end of

the first build phase.

Summary
The algorithms for working out the cost of a hash join are highly dependent on whether you

enable CPU costing and/or the automatic workarea policy. This means that an upgrade from 8i

to 9i, or any change in the features enabled, may cause dramatic changes in costs, which can

result in dramatic changes in execution plans.

Whatever set of features you have enabled for costing, there are “catastrophe” points in

the calculations, i.e., points where a change in the hash_area_size (or pga_aggregate_target)

that should apparently produce a decrease in cost may cause an increase in cost—the point at

which this occurs is dependent on which features are enabled. Effectively, this means you

cannot safely fine-tune hash joins by tweaking either of these parameters and expect the end

result to be stable—you can always be unlucky.

The most nicely behaved option at present seems to be manual hash_area_sizes with CPU

costing enabled. This fails to produce an appropriate cost for multipass joins, but does produce

good costs for onepass and optimal joins.

Despite the apparent niceness of the manual hash_area_size with CPU costing, the strategic

option is to set the workarea_size_policy to auto, and use the pga_aggregate_target with

CPU costing. For problem queries, you may want to override the memory allocation at the

session level, and fix some access paths by very deliberate use of hints at the statement level.

Bear in mind that workarea_size_policy budgets for multitable joins much more wisely

than the manual policy. This, in itself, is a very good reason for switching to the new technology.

Test Cases
The files in the downloads for this chapter are shown in Table 12-4.

Table 12-4. Chapter 12 Test Cases

Script Comments

Hash_opt.sql Simple example of in-memory (optimal) hash join

Hash_one.sql Onepass hash join

Hash_multi.sql Multipass hash join

Hash_one_bad.sql An anomaly in costing a onepass join using traditional methods

Hash_pat_bad.sql An anomaly in costing a onepass join using the latest features

has_nocpu_harness.sql Driver for generating traces with manual hash_area_size, without
CPU costing

C H A P T E R 1 2 ■ H A S H JO I N S 351

has_cpu_harness.sql Driver for generating traces with manual hash_area_size, with
CPU costing

pat_nocpu_harness.sql Driver for generating traces with automatic hash_area_size,
without CPU costing

pat_cpu_harness.sql Driver for generating traces with manual hash_area_size, with
CPU costing

has_dump.sql Unit script used by has_nocpu_harness.sql and has_cpu_harness.sql

pat_dump.sql Unit script used by pat_nocpu_harness.sql and pat_cpu_harness.sql

hash_stream_a.sql Hash join costs with manual hash_area_size and no CPU costing

hash_stream_b.sql Hash join costs with manual hash_area_size and CPU costing
enabled

hash_stream_c.sql Hash join costs with automatic hash_area_size and no CPU costing

hash_stream_d.sql Hash join costs with automatic hash_area_size and CPU costing
enabled

treble_hash.sql Generates tables for three-way hash join

treble_hash_auto.sql Executes three-way hash join using workarea_size_policy = auto

treble_hash_manual.sql Executes three-way hash join using workarea_size_policy = manual

snap_myst.sql Reports changes in current session’s statistics

c_mystats.sql Creates view used by script snap_myst.sql—has to be run as SYS

setenv.sql Sets a standardized environment for SQL*Plus

Table 12-4. Chapter 12 Test Cases

Script Comments

353

■ ■ ■

C H A P T E R 1 3

Sorting and Merge Joins

A merge join requires both its inputs to appear in sorted order, and quite often it is the sorting

that uses more resources than the rest of the operation. Consequently, the first section of this

chapter is all about sorting, with the mechanisms and costs of the merge operation appearing

only in the latter part of the chapter.

Sorting is a rather special operation that is worth focusing on because it is such a common

operation, and yet the actual mechanisms and resource requirements are still not commonly

known. Oracle may need to use sorting for order by clauses, group by clauses, the distinct

operator, merge joins, connect by queries, B-tree to bitmap conversions, analytic functions, set

operations, index creation, and probably a couple of other cases that I happen to have overlooked.

Although users of 9i onwards should be taking advantage of the automatic

workarea_size_policy for memory management and using the pga_aggregate_target to set

the accounting target for the bulk-memory operations such as sorting, this chapter starts with

these features disabled. Remember that the automatic workarea_size_policy affects the quantity

of memory a process is allowed to acquire, and how it frees it; but since I will initially be trying

to demonstrate how Oracle uses that memory, it doesn’t really matter whether the allocation

strategy was something that Oracle handled dynamically, or something that I fixed manually.

As we did in Chapter 12, though, we will eventually move on to review the four possible

combinations of CPU costing and workarea_size_policy settings. And, as with hash joins, we

will find that the changes as we enable new features are more important than the absolute

figures that come out of any calculations.

One of the key problems in understanding the cost calculation for sorting is that the cost

formula from the 9.2 Performance Guide and Reference that I quoted in Chapter 1 does not

include a component to represent the writes and reads that might be relevant to sort operations

that spill to disk.

A further problem appears when you examine the 10053 trace files, and find that there are

several discrepancies between the model implied by the numbers and the actual activity. The

dramatic variation between versions doesn’t make the trace files any easier to comprehend.

Getting Started
As with hash joins, there are three levels of efficiency with sorting—optimal, onepass, and

multipass.

354 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

• The optimal sort takes place completely in memory. We simply read and sort a stream of

data, keeping everything in memory as we go. We run out of data before we run out of

memory, so we don’t have to use any disk space as a scratch working area. Contrary to

popular belief, we only allocate memory gradually as we read data; we don’t allocate the

entire sort_area_size (or limit implied by the pga_aggregate_target) as we start the sort.

• The onepass sort appears when the data gets too big to fit in memory. We read as much

data as we can deal with into the available memory, sorting it as we go, and when we

reach our memory limit, we dump the sorted set to disk. We then read more data, sorting

it as we go, and when memory is full again, we dump the next sorted set to disk, and so

on until we have used up the entire input data stream. At this point, we have several

sorted runs of data on disk, and have to merge them into a single set. We have a onepass

sort if we have enough memory to read a chunk from every single sorted run at once. If

you want an idea of what the merge step looks like, record a video of someone dealing a

deck of cards, and then play the video backwards.

• The multipass sort starts like a onepass sort, but it comes into play when all the data has

been used up and written to disk, and your session discovers that it does not have enough

memory to hold a chunk from every single sorted run at once. In this case, you have to

merge a few streams, writing a single larger stream back to disk, and then merge a few

more streams, writing another larger stream back to disk. Eventually, you would have

processed all the original streams, and can start reading back and merging a few of the

larger streams—possibly writing even larger streams back to disk. Ultimately, you would

be able to merge all the (possibly very large) streams that were left on disk. The number

of times you have to read the data is referred to as the number of merge passes.

Let’s build an example so that we can get some idea of what is going on with a simple sort

operation. We start with a table of about one million rows (1,048,576—the closest power of

two—to be exact) of pseudo-random, fixed-length data and run a simple query that sorts it.

As usual, my demonstration environment starts with an 8KB block size, locally managed

tablespaces, 1MB uniform extents, manual segment space management, and system statistics

(CPU costing) disabled and, as I pointed out in the chapter introduction, a manual workarea_

size_policy. Moreover, for reasons that will become clear later, I have to point out that I am

using a 32-bit operating system for this series of tests (sort_demo_01.sql in the online code suite).

My strategy for investigating sorting is going to be completely different from the approach

I have used in the rest of the book. Instead of looking at autotrace or any other execution plan

details, I am going to employ various trace events and dynamic performance views to show

what’s going on.

execute dbms_random.seed(0)

create table t1 as

with generator as (

 select --+ materialize

 substr(dbms_random.string('U',4),1,4) sortcode

 from

 all_objects

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 355

 where

 rownum <= 5000

)

select

 /*+ ordered use_nl(v2) */

 substr(v2.sortcode,1,4) || substr(v1.sortcode,1,2) sortcode,

 substr(v1.sortcode,2,2) v2,

 substr(v2.sortcode,2,3) v3

from

 generator v1,

 generator v2

where

 rownum <= 1048576

;

-- Collect statistics using dbms_stats here

alter session set workarea_size_policy = manual;

alter session set sort_area_size = 1048576;

alter session set events '10032 trace name context forever';

alter session set events '10033 trace name context forever';

alter session set events '10046 trace name context forever, level 8';

alter session set events '10053 trace name context forever';

select sortcode

from t1

order by

 sortcode

;

Apart from the trace options that I have listed in the preceding code fragment, my sample

program also captures statistics relating to file I/O, session activity, and session waits for the

duration of the query, and some of the statistics about table t1. With all these collections going

on, we can start cross-referencing various pieces of information to produce some interesting

observations.

After using the dbms_stats.gather_table_stats procedure, I can check view user_tables

to confirm that the table fills 2,753 blocks, and holds 1,048,576 rows with an avg_row_len of

14 bytes, and that the avg_col_len for column sortcode is 7 bytes (the v2, v3 columns are there

simply to avoid the possibility of some funny boundary conditions appearing). These 7 bytes

include the 1 byte that holds the column length itself, so we can work out that the total volume

of data sorted must be 6MB, and that my memory allocation of 1MB is not going to be sufficient

for an in-memory (optimal) sort.

Sure enough, here are some corroborative statistics extracted from reports based on

v$mystat and v$tempstat, respectively, when running the test case against 9.2.0.6 (scripts

snap_myst.sql and snap_ts.sql will create packages to acquire and format this data):

356 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

Name Value

---- -----

consistent gets 2,758

physical reads direct 1,565

physical writes direct 1,565

table scans (long tables) 1

table scan rows gotten 1,048,576

table scan blocks gotten 2,753

sorts (disk) 1

sorts (rows) 1,048,576

T/S Reads Blocks Avg Csecs Writes Blocks Avg Csecs

---- ----- ------ --------- ------ ------ ---------

TEMP 993 1,565 2.420 269 1,565 .710

In the session statistics, we can see that we have done one long tablescan and one sort to

disk. The number of rows scanned in the tablescan is the 1,048,576 that we expect. The figure

for consistent gets (2,758) agrees reasonably well with the size reported for the table (2,753

blocks), as does the number of table scan blocks gotten. Finally, the number of physical

reads direct and physical writes direct agrees with the number of block reads and writes

reported from v$tempstat.

■Note File-based statistics report read requests and blocks read as two separate figures, similarly write

requests and blocks written, while the session statistics report the number of blocks written and read with

names that makes it look as if they were the number of I/O requests.

SESSION STATISTICS

Many people use the view v$sesstat to check the statistics for a specific session. However, if the session

you wish to monitor is your own, there is a more precisely targeted view called v$mystat that reports only

the statistics for the current session.

For convenience, I usually create a view called v$my_stats in the sys schema to join v$mystat to

v$statname (see scripts c_mystats.sql and snap_myst.sql in the online code suite).

Event 10032 reports the statistics about activity that took place for a sort, event 10033 lists

details of the I/O that took place, event 10046 is the extended trace that I have enabled at level 8

to record wait states (“eight” for “wait,” if a rhyming mnemonic helps), and event 10053 is the

CBO trace. So let’s see how some of their outputs tally with the statistics we have seen so far.

Event 10033 shows the following:

*** 2005-01-20 09:35:02.666

Recording run at 406189 for 62 blocks

Recording run at 4061c8 for 62 blocks

Recording run at 406206 for 62 blocks

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 357

 19 similar lines deleted

Recording run at 4066de for 62 blocks

Recording run at 40671c for 62 blocks

Recording run at 40675a for 62 blocks

Recording run at 406798 for 15 blocks

Merging run at 406798 for 15 blocks

Merging run at 406189 for 62 blocks

Merging run at 4061c8 for 62 blocks

 19 similar lines deleted

Merging run at 4066a0 for 62 blocks

Merging run at 4066de for 62 blocks

Merging run at 40671c for 62 blocks

Merging run at 40675a for 62 blocks

Total number of blocks to read: 1565 blocks

As Oracle dumps sorted data to disk, producing sort runs, it records the volume of data

dumped and the database block address in the temporary tablespace where each sort run

starts. We could add up the number of blocks written and read, but conveniently the total for

this onepass sort appears at the bottom of the output—and it agrees with the direct reads and

writes, and the blocks read and written figures in v$mystat and v$tempstat, respectively.

The (hex) numbers, such as 4061c8, are the block addresses where each sort run starts. So

if we want, we can start dumping raw blocks to see what’s in them. Convert the hex to decimal

(0x4061c8 is 4,219,336) and then use the data_block_address_file and

data_block_address_block functions from the dbms_utility package to extract file and block

numbers. (Bear in mind that for systems with lots of tablespaces and files, the file number is the

absolute file number, not the tablespace-relative file number.) In this case, block 4,219,336

corresponds to block 25,032 of (temporary) file 1. So we can issue a dump command and check

the content of the trace file as follows:

alter system dump tempfile 1 block min 25032 block max 25032;

Start dump data blocks tsn: 2 file#: 1 minblk 25032 maxblk 25032

buffer tsn: 2 rdba: 0x004061c8 (1/25032)

scn: 0x0000.031652d5 seq: 0x01 flg: 0x0c tail: 0x52d50801

frmt: 0x02 chkval: 0x65b6 type: 0x08=unknown

Dump of memory from 0x10593014 to 0x10594FFC

10593010 004061C8 0000003F 004061C9 [.a@.?....a@.]

10593020 00000000 00000041 00001FE8 00000000 [....A...........]

10593030 000002A6 00000008 41410006 45425242 [..........AABRBE]

10593040 00000008 41410006 584A5242 00000008 [......AABRJX....]

10593050 41410006 484F5242 00000008 41410006 [..AABROH......AA]

10593060 45535242 00000008 41410006 42555242 [BRSE......AABRUB]

The trace file isn’t really exciting, but you will notice one detail—in the section to the right

of the data dump, fifth line down, you can see that six dots appear between AABROH and AABRSE.

In sorting our 6-byte strings, there is an overhead of 6 bytes per entry in the dumped data.

358 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

In this example, we can explain the overhead by looking at the entry for AABRBE a couple of

lines higher up. After sorting out the byte-swapping for the platform, we can see that this matches

the numeric dump 00000008 41410006 45425242 on the same line. We have

6 bytes for the length of the entry 00000008 --

2 bytes for the length of the column 0006 --

6 bytes of data 414142524245 -- after byte reordering

Although it’s not visible in the example, entries are also zero-padded to a multiple of 4 bytes.

The formatting of data that gets dumped to disk during a sort means that the total volume

dumped may be somewhat larger than you expect—we dumped a total of 1,565 blocks, which

is over 12MB, when sorting only 6MB of raw data. The overhead looks particularly expensive in

this case because we are sorting a very short row.

But there’s another puzzle about the sort runs written to disk. Why are they 62 blocks long

when I have a block size of 8KB and a sort_area_size of 1MB (or 128 blocks)—surely Oracle

should be able to sort more than 62 blocks worth before running out of memory and dumping

it to disk?

CHOOSING TEMPORARY EXTENT SIZES

You may recall that for many years, the directive on setting the extent size in the temporary tablespace was to

use an exact multiple of the sort_area_size (sometimes the advice suggested an extra block or two) as

Oracle would dump data equivalent to the sort_area_size when it had to dump at all. It always struck me

as an attempt to be too precise—it was only when I discovered event 10033 that I realized how totally arti-

ficial this advice was.

In passing, if you are using proper temporary tablespaces and global temporary tables (GTTs), it is

probably the characteristic use of GTTs that should dictate the uniform extent size of the temporary tablespace.

Remember that every concurrent user of a GTT acquires one extent for their private copy of the table and one

extent for each of its indexes. You might want small extents if you have a large number of concurrent users of GTTs.

Before solving the puzzle of the “missing” space, let’s use a little trial and error to find out

how large my sort_area_size has to be before I get an optimal (in-memory) sort (see script

sort_demo_01a.sql in the online code suite). Table 13-1 shows memory settings, sizes of sort

runs on disk, and (for reasons that will become apparent) the CPU time spent for different

settings of sort_area_size.

Table 13-1. Comparing sort_area_size with Resource Usage

sort_area_size Sort Run Sizes—

Excluding Last

Number of

Sort Runs

Blocks

Written

CPU Seconds

1MB / 128 blocks 62 blocks 26 1,565 4.30

2MB / 256 blocks 122–123 blocks 13 1,552 4.44

4MB / 512 blocks 241–245 blocks 7 1,550 5.09

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 359

So, to sort a data set of 6MB, we need to allocate 25.5MB of memory before we can complete

the sort in memory. Not only that, the amount of CPU that we use tends to increase as we use

more memory. Does this tell us anything about how Oracle is doing its sorting?

Memory Usage

Oracle’s sorting mechanism seems to be based on a binary insertion tree. What this means is

that Oracle is effectively loading your data into a simple in-memory list, and maintaining an in-

memory index on that data at the same time.

The significance of the word binary is that I believe the index is a binary tree, which means

that each node in the tree has at most two children. As each new row of data is read, Oracle

traverses the tree, using a simple binary chop mechanism to determine where that row should

belong.

At the bottom of the tree, there are only two options. Either there is an available spot in the

node where the data belongs or the node is full. If the node is full, Oracle has to add a new node,

possibly by splitting the current node and propagating the split back up the tree as far as necessary.

If this hypothesis is correct, this would result in a tree that was always height balanced—which

means no long dangly bits hanging down from the main body of the tree—with a height that

was always approximately log2(number of rows to be sorted). For example, with eight rows

loaded in an order that made a perfect tree, we would have a binary tree with a height of three

(Log2(8) = 3).

ORACLE’S SORTING ALGORITHM

I would particularly like to mention Richmond Shee (coauthor of Oracle Wait Interface: A Practical Guide to

Oracle Performance Diagnostics and Tuning) for giving me some very important clues (see his paper to the

IOUG-A conference 2004, “If your memory serves you right,” about how Oracle manages its sorting).

Until I saw his paper, I had casually assumed that Oracle would be loading data into memory and then

using one of the standard algorithms for sorting in place. It had not occurred to me that Oracle would be using

an insertion tree mechanism for sorting, and reading his paper gave me a truly “Aha!” moment.

Figure 13-1 shows a simple schematic of how Oracle uses the sort memory. You will notice

that I have drawn a tree and a separate data stack. I don’t think Oracle keeps the actual row

8MB / 1,024 blocks 484–492 blocks 4 1,549 5.71

12MB / 1,540 blocks 725–748 blocks 3 1,549 6.00

16MB / 2,048 blocks 970 and 577 blocks 2 1,548 6.02

25.5MB / 3,264 blocks 0 6.21

Table 13-1. Comparing sort_area_size with Resource Usage

sort_area_size Sort Run Sizes—

Excluding Last

Number of

Sort Runs

Blocks

Written

CPU Seconds

360 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

values embedded in the tree, as the code and memory structures used would be much cleaner

if the data were listed separately and the leaf nodes on the tree held pointers to the relevant row.

Figure 13-1. Memory usage during a sort

I’ve also simplified the diagram by showing the whole tree in just one chunk of memory,

and the entire data stack in another chunk. In fact, Oracle allocates memory for sorting a little

bit at a time as the data is read, so the tree and the data will be broken up into lots of little pieces,

interleaved through the available memory.

When Oracle has completed the sort, or when it has to dump the data to disk in sorted

order, it simply walks the tree, jumping around the data heap to supply the data in the correct

order.

This sorting strategy would explain the unexpected memory requirement as follows:

• My guess is that each node on the tree is just a set of three pointers (parent, left child,

right child), and for a 32-bit operating system, a pointer will be 32 bits, 4 bytes, so each

node will be 12 bytes.

• Although my data items (in their raw form) were only 6 bytes each, by the time they had

been put into the format we saw in the block dump, they had grown to 12 bytes each.

Now we have to allow for 12 bytes per node, and the total number of nodes in a (fully

populated) binary tree is one less than the number of items—note how the diagram

shows eight data items and seven nodes on the tree.

• In effect, our single raw data item has grown from 6 bytes to 24 bytes—it’s not surprising

that we couldn’t do a full in memory sort with less than the 25.5MB of memory we used,

especially allowing memory for I/O buffers.

There is an important side effect, of course. I was running on a 32-bit system. What’s going

to change if I switch to a 64-bit system? Pointers are going to double in size. The extra 12 bytes

per row due to the nodes is going to turn into an extra 24 bytes per row. If you are running a 64-bit

operating system, the sort in the sample code won’t complete in memory unless you set the

sort_area_size to something like 38MB.

CPU Usage

Historically, the mantra has always been that you tune sorts by increasing the sort_area_size

so that they complete in memory and don’t spill to disk. But I’ve just demonstrated that increasing

the sort_area_size increases the CPU usage—which seems to contradict the oral tradition.

This, too, could be explained by the binary insertion tree algorithm.

Before addressing the contradiction, let’s go back to another of the traces that I enabled—

event 10032—and look at some of the information it provides. Running the same test with the

initial 1MB for sort_area_size, the full 10032 trace file looks like this:

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 361

---- Sort Parameters ------------------------------

sort_area_size 1048576

sort_area_retained_size 1048576

sort_multiblock_read_count 2

max intermediate merge width 29

---- Sort Statistics ------------------------------

Initial runs 26

Number of merges 1

Input records 1048576

Output records 1048576

Disk blocks 1st pass 1565

Total disk blocks used 1567

Total number of comparisons performed 19863631

 Comparisons performed by in-memory sort 14869919

 Comparisons performed during merge 4993712

Temp segments allocated 1

Extents allocated 13

 ---- Run Directory Statistics ----

Run directory block reads (buffer cache) 27

Block pins (for run directory) 1

Block repins (for run directory) 26

 ---- Direct Write Statistics -----

Write slot size 49152

Write slots used during in-memory sort 2

Number of direct writes 268

Num blocks written (with direct write) 1565

Block pins (for sort records) 1565

Cached block repins (for sort records) 25

 ---- Direct Read Statistics ------

Size of read slots for output 16384

Number of read slots for output 64

Number of direct sync reads 435

Number of blocks read synchronously 461

Number of direct async reads 558

Number of blocks read asynchronously 1104

You’ll see that the trace file starts by listing the critical sort-related parameters

(sort_area_size, sort_area_retained_size, and sort_multiblock_read_count) and the derived

figure max intermediate merge width. The max intermediate merge width is the number of

sorted runs that Oracle will be able to read and merge simultaneously (and dump back to disk

as one larger run) if the volume of data to be sorted pushes Oracle into a multipass sort.

The second part of the printout, the Sort Statistics section, is actually dumped twice—

possibly once as Oracle finishes building the result set, then again as the cursor closes. I don’t

want to describe the entire report in detail, but you’ll notice that the Initial runs figure (26)

matches the number of lines in the 1033 trace that say Recording run at mmmmm for nn blocks,

362 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

and the Disk blocks 1st pass figure (1565) also agrees with the summary line Total number of

blocks to read: 1565 blocks in the 10033 trace. The number of merges is one—this is a good

thing and the ideal target for very large sorts that can’t complete in memory. The number of

merges will inevitably be one if the Initial runs value does not exceed the max intermediate

merge width, and the session statistics will record this as a onepass workarea execution. (In

fact, it is possible for the number of merges to be one even when the initial runs exceeds the max

intermediate merge width, as we shall see in the upcoming section about the pga_aggregate_

target.)

We can see the number of input records (1,048,576), but the interesting numbers are the

number of comparisons: roughly 20,000,000 in total, 15,000,000 during the in-memory sorting,

and 5,000,000 during the merge from disk. These numbers will vary with the randomness of the

incoming data and the memory size, but for a fixed set of data, it is worth running a few exam-

ples to see if there are any patterns to the numbers (script sort_demo_01a.sql in the online

code suite may help).

Table 13-2 lists a few results—the last two columns report some results derived from the

preceding columns.

From the table, you can see that the number of comparisons that take place during the

merge from disk is remarkably close to number of rows * log2(number of sort runs). This tells

you that Oracle is probably keeping a little tree-like structure that points to the start of each run

that has been reloaded, and effectively keeps walking down the tree to find which run has the

next smallest item. (Alternatively, you could think of this tree as a list of the top item from each

run, with Oracle doing a binary chop to see which top of list is currently the lowest value.)

If you recall that our test case has 1,048576 rows, and log2(1,048,576) = 20, you will also

notice that the number of comparisons for the memory sort is quite close to: number of rows *

log2(number of rows). The figure is not extremely accurate (it would have to be 20,971,520 to be

perfect), and for some special cases the result can be quite a long way off—the code seems to

have some optimizations that cater to runs of presorted values.

Table 13-2. How sort_area_size Affects Number of Comparisons Needed

sort_area_size In-Memory

Comparisons

Initial

Runs

Merge

Comparisons

Number of Rows *

Log2(Initial Runs)

Total

Comparisons

1MB 14,869,919 26 4,993,712 4,929,000 19,863,631

2MB 15,969,150 13 3,946,598 3,880,000 19,915,748

4MB 16,984,029 7 2,981,434 2,944,000 19,965,463

8MB 17,967,788 4 2,097,141 2,097,152 20,064,929

12MB 18,564,704 3 1,604,693 1,662,000 20,169,397

16MB 18,884,122 2 1,048,573 1,048,576 19,932,695

24MB 19,622,960 2 1,048,555 1,048,576 20,671,515

25.5MB 19,906,600 0 0 n/a 19,906,600

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 363

It was the appearance of this factor of log2(), combined with the three pointers per data-

value, that led me to believe that the insertion tree was a binary tree, but the degree of error that

sometimes appears may mean my assumption is wrong.

HEAPSORTS

It is possible that Oracle is using a form of the heapsort, which would start by loading data into a partly

ordered tree structure known as a heap. (The word heap sometimes means something far more structured

than the way teenagers store their belongings.) A heapsort then uses a shuffle-down mechanism to restruc-

ture the heap into a fully sorted structure.

I have discounted the heapsort as Oracle’s mechanism for sorting because even though the number of

comparisons used is appropriate, the optimum implementation of the heapsort algorithm needs only one

pointer per entry rather than the three which, given the amount of memory involved, Oracle seems to use.

Interestingly, I have heard comments that the 10gR2 release is very much faster at sorting than previous

releases—so perhaps the Oracle developers have finally changed the algorithm and the code will have switched to

a heapsort by the time you read this note.

The final column in the table reports the total number of comparisons performed. As you

can see, this doesn’t really change significantly, as the balance shifts from in-memory sorting

to merge sorting. But the previous table showed that we used increasing amounts of CPU as we

shifted from the disk based to the memory-based sort. How could this happen?

It seems a little unlikely that the CPU time of an actual comparison between data items is

different in the two types of operation—but it could take more CPU to walk up and down the

tree to find something to compare with! When we did the full in-memory sort, we had a pretty

tall tree to traverse (the height of the tree is log2(number of rows)). But when we sorted a small

fraction of the data (4% in our smallest test case earlier) before dumping it, each individual in-

memory sort run produced a much shorter tree—so the total CPU time spent traversing trees

was a lot less. And the final merge is only traversing a very short tree as well. It’s not the data

comparisons that cost us CPU, it’s traversing the pointers that make up the trees.

It is important to realize that if your bottleneck is CPU and your I/O subsystem is not under

pressure, then you may be able to improve your performance on large sorts by switching from

in-memory sorts to using the minimal amount of memory that can produce a onepass sort.

It is also important to note that if you can’t do an in-memory sort, you will be dumping the

entire data set to disk anyway—you do not get a “little extra” benefit by having a “little extra”

memory, it’s all or nothing—so you want to set your sort_area_size to the smallest value you can

get away with that doesn’t push the sort into a multipass operation. (When we get to the automatic

workarea_size_policy, we will see that this strategy seems to be built into the run-time code.)

■Note Contrary to the traditional advice, there are cases where you can make sort operations complete

more quickly by reducing the memory, and sorting to disk. The most dramatic example I have seen of this

counterintuitive result was a series of large index builds where a typical index build time dropped from

150 seconds to 85 seconds (140 CPU seconds down to 75 CPU seconds) because we dropped the

sort_area_size from 500MB to 5MB. However, that was a system with very fast disks and an enormous

cache between Oracle and the disks—the I/O subsystem was under absolutely no pressure whatsoever.

364 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

sort_area_retained_size

The sort_area_retained_size can also be set to modify the behavior of sorting. The default

value is 0, which means the sort_area_retained_size should dynamically adjust itself to

match the current setting of the sort_area_size.

Setting the sort_area_retained_size to something other than 0 has two effects. First, it

changes the way Oracle acquires and releases memory, and, second, it affects the way that

Oracle uses the temporary tablespace.

SHARED SERVERS AND P_A_T

If you are using Shared Servers (or Multithreaded Server —MTS—as it used to be called), then in 9i the

memory for bulk-memory operations such as sorting, hash joins, and so on, still uses the parameters relevant

to a manual workarea_size_policy rather than the limits dictated by the pga_aggregate_target, and

any memory allocated in the user global area (UGA) for these operations is based in the shared or system

global area (SGA), not in the process global area (PGA). This changes in 10g.

Go back to script sort_demo_01.sql and run two tests, restarting your SQL*Plus session for

each test. For the first test, set the sort_area_size to 30MB and do not set the sort_area_

retained_size; for the second test, leave the value for the sort_area_size at 30MB and set the

sort_area_retained_size to 8MB (this test is implemented as script sort_demo_01a.sql in the

online code suite) After each test, check the tempfile I/O figures and the changes in session

statistics relating to sorts and memory usage. Table 13-3 shows what I got under 9.2.0.6.

The most significant thing about these statistics is the physical writes direct—by spec-

ifying a non-zero sort_area_retained_size we have made Oracle dump the entire data set to

disk before returning results to the client (which may also explain the extra PGA memory—we

need it for the I/O buffers, which we wouldn’t otherwise be using).

Table 13-3. Impact of sort_area_retained_size on I/O

Statistic sort_area_retained_size = 0 sort_area_retained_size = 8MB

session UGA memory max 25.5MB 8.3MB

Session PGA memory max 25.8MB 28.5MB

Physical writes direct 0 1,547

sorts (disk) 0 0

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 365

I have included the number of sorts to disk reported by v$sesstat, just to point out that

Oracle does not consider this to be a sort to disk—the sorting was all over before the data was

dumped to disk as a holding location.

This is the way things happen when the sort_area_retained_size is set. The first allocation

of memory is in the UGA, but when the allocation reaches the limit set by sort_area_retained_

size, memory is then allocated in the PGA. Even if a sort completes in memory, the entire

sorted data set will be dumped to disk if that memory has been split between the UGA and

the PGA.

SO WHEN IS MEMORY ALLOCATED?

It is important to remember that the sort_area_size and sort_area_retained_size represent limits

on memory allocation. You may still hear the suggestion from time to time that a session acquires the amount

of memory defined by sort_area_size as it starts. This is not true. The memory is only allocated as needed

for sorting, and even then it is only allocated a bit at a time, not all at once.

The same error has also been made about the pga_aggregate_target. There have been a couple of

articles stating that the whole of the pga_aggregate_target is actually acquired by the instance at instance

startup. This is completely incorrect. First, the parameter is simply a number that is used for accounting purposes

(and you can go over budget); secondly, the memory is never acquired “by the instance,” it is acquired and

released by individual processes only as and when needed.

As I pointed out earlier in this chapter, if you are using Shared Servers (MTS), then the UGA

is in the SGA, so memory up to the sort_area_retained_size will be allocated from the SGA—

typically the large pool, although if you have forgotten to specify a value for the parameter

large_pool_size, it will come from the shared pool. The excess demand, up to (sort_area_size

– sort_area_retained_size) will be allocated in the PGA, which means it will appear in

the memory of the Shared Server process (i.e., the processes that are called things like

ora_{SID}_sNNN—at which point it will be accounted by the code that handles the pga_

aggregate_target calculations).

If the sort_area_retained_size is less than the sort_area_size, then the sorted data will

be dumped to disk as the sort completes, the excess memory allocated in the PGA will be made

available for other activity, and the sort_area_retained_size (possibly limited to 2MB according to

some recent experiments) will be used to reload the dumped data for further processing.

pga_aggregate_target

At the start of this chapter, I made the comment that the mechanics of sorting don’t change if

you use a manual workarea_size_policy and sort_area_size rather than the newer automatic

workarea_size_policy and pga_aggregate_target. The time has come to demonstrate this fact.

366 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

Using the automatic workarea_size_policy, the DBA sets an accounting target for Oracle

that defines a limit on the total amount of memory that should be in use across all processes for

the bulk-memory operations such as sorting, hash joins, creating indexes, and bitmap index

operations. Various parts of the Oracle kernel code then cooperate to check current memory

allocation, avoid allocating excessive memory, and release memory that is not needed.

Of course, memory related to PL/SQL operations (such as array processing) falls outside

the control of this mechanism, although the allocation is still tracked for accounting purposes

and has an impact on the amount of memory allowed to other work areas. (You may have prob-

lems with systems where sessions connect and disconnect extremely rapidly, as checking of

the limit only occurs every three seconds.)

There are many parameters (mostly hidden) affecting the details of operation—but there

are two critical details that matter most: by default, any one work area for a serial operation is

allowed a maximum of 5% of the pga_aggregate target, and a work area for a parallel opera-

tion is limited so that the total across all slaves involved in that operation is no more than 30%

of the pga_aggregate_target—with an upper limit of 5% for each slave, which means that you

only see the effect of the 30% limit if you have queries with a degree of parallelism greater than

six (since 5 * 6 = 30).

The hidden parameter _smm_max_size shows the limit for serial execution, and _smm_px_

max_size shows the limit for parallel execution. A further parameter is the _smm_min_size,

which shows the smallest effective memory allocation that a session will get for a work area. In

9.2.0.6, this seems to default to 0.1% of the pga_aggregate_target, with a minimum value of

128KB, and a maximum of 1MB. Given that a single session may have several bulk-memory

operations running concurrently, there is a further parameter that is the limiting target for a

single session, the _pga_max_size that defaults to 200MB; and in fact, a secondary limit on the

default value for the _smm_max_size is that it should be no more than half the _pga_max_size

(although we saw in Chapter 12 that hash joins seem to base their arithmetic on double the _smm_

max_size and may be allowed some leeway in overshooting the _smm_max_size at run time).

We can get some idea of how Oracle makes best use of memory by running the same sample

code as before (see script sort_demo_01b.sql in the online code suite) but setting workarea_

size_policy to its default value of auto with a pga_aggregate_target of 200MB. The effect is

that our process has a limit of 10MB (5% of 200MB) imposed on the sort operation, and we

know that our sample code needs about 25.5MB for an in-memory sort.

After running the query, we see in v$mystat that the UGA memory max has gone up by 9.7MB,

and the PGA memory max has gone up by 10.7MB. So it looks as if the session has been allowed

to acquire the full 10MB limit to do this sort. However, if we look at the 10032 and 10033 trace

files, we observe an oddity (the following is an extract of the critical details):

Recording run at 404489 for 598 blocks

Recording run at 4042e0 for 127 blocks

Recording run at 40425f for 128 blocks

Recording run at 4041df for 162 blocks

Recording run at 404181 for 198 blocks

Recording run at 403947 for 226 blocks

Recording run at 403a29 for 111 blocks

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 367

---- Sort Parameters ------------------------------

sort_area_size 3555328

sort_area_retained_size 3555328

sort_multiblock_read_count 31

max intermediate merge width 5

---- Sort Statistics ------------------------------

Initial runs 7

Number of merges 1

The most obvious anomaly is that Oracle has reported the sort_area_size as 3.5MB, when

we know that the memory demand must have peaked at around 10MB.

Then we notice the sizes of the sort runs: the first one was 598 blocks (about 4.5MB), followed

by several more modestly sized runs in the region of 1MB to 1.7MB. Given our knowledge of

how much “excess” memory Oracle needs for sorting, we know that the first sort run is consistent

with a 10MB sort_area_size, and the rest are consistent with a sort_area_size of around 2MB

to 3.5MB.

You might also notice that the sort_multiblock_read_count of 31 is much higher than the

value of 2 that we saw in our earlier 10032 trace, with a corresponding reduction in the max

intermediate merge width.

There is even a hint of an anomaly in the max intermediate merge width—although it has

the value 5, the next few lines from the 10032 trace tell us that we produced seven sort runs,

but merged them all in one pass. The key is in the word intermediate. The mechanism (or

possibly just the reporting) varies depending on whether the workarea_size_policy is set to

manual or auto, but the run-time engine has some room to be flexible on the final merge pass of

a sort operation, as it can determine that it will be possible to read and merge all the streams in

one go if it avoids reserving any memory for writing streams back to disk. Hence my comment

earlier on that the number of merge passes could still be one even though the number of initial

runs exceeds the max intermediate merge width.

THE SORT_MULTIBLOCK_READ_COUNT PARAMETER

The sort_multiblock_read_count dictates the number of blocks that a process can read from a single

sort run in one read. A larger read size may allow your hardware to offer better performance on the merge, but

since there is a strict limit on the total memory available for the merge, a larger read size reduces the number

sort runs that can be read and merged simultaneously. If you cannot merge all the runs in one go, you have to

merge a few at a time, rewriting the results as you go, and then do extra merge passes with the larger runs

you have just produced. This is reported from 9i onwards in the session statistics as workarea executions

- multipass and is something that you normally want to avoid.

Historically, Oracle Corp. advised against modifying the sort_multiblock_read_count, and the

parameter usually seemed to set itself to two (or one) blocks—even when the available memory was very

large and the upper limit for the max intermediate merge width (678) had been reached. If you are still

running 8i (or 9i with manual workarea sizes), you may find that you can get a little performance edge for very

large sorts by checking the 10032 trace and adjusting the sort_multiblock_read_count for a specific

session or specific statement.

368 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

The strange contradictions in the trace reports can be explained by the optimistic, yet

thrifty, mechanisms used by the run-time engine. Because the pga_aggregate_target was set

to 200MB for the test, my process had a limit of 10MB for the sort. Because nothing else was

going on during my test, the kernel code allowed my session to grow to that limit—effectively

checking view v$pgastat (and possibly summing v$sql_workarea_active) to compare the

global target with the total amount of PGA memory currently allocated.

So the sort operation starts with an effective sort_area_size of 10MB; but on the first pass—

when the 10MB is completely filled for the first time by the data and its insertion tree—it becomes

apparent that the sort cannot complete in memory. The session dumps the first run to disk,

and releases memory back to the accounting pool. I suspect that there is some calculation at

this point that estimates a small but safe size of memory that will allow the sort to complete as

a onepass sort. The ideal is to hold on to enough memory to keep the operation down to a

onepass sort, but not to have so much that (a) the CPU cost is unnecessarily increased, or, more

importantly, (b) other processes in need of memory are starved as a result of our greed.

Given the steady increase that we can see in the sizes of the sort runs, it is possible that the

session checks the state of the PGA global allocation each time it dumps to disk. It is also possible

that part of the calculation is keeping a check on the number of runs generated and anticipating

the amount of memory needed to perform a single merge with the minimum I/O overheads.

There is one more significant detail about the 10032 trace that doesn’t stand out in the

extract I’ve printed. In 8i, the Sort Parameters section of the trace file is printed before the sort

runs start—in 9i the figures are printed after the first pass to disk has completed. The figures in

the trace file reflect the state of the PGA just after the final sort run is dumped; and this just

happens to catch the fact that the new code has the capability to take advantage of larger

memory allocations by electing to use a much larger I/O size during merging. (The minimum

and maximum for this I/O size is now set by hidden parameters _smm_auto_min_io_size and

_smm_auto_max_io_size.) Whatever else the optimizer may be doing with its arithmetic in 9i, it

is not using the run-time value of sort_mulitblock_read_count reported in the 10032 trace.

Real I/O

One final point to consider before moving on to the way the optimizer generates a cost esti-

mate for a sort is the real impact of the I/O that we’ve seen.

Looking back at the 10032 trace for the original test with the 1MB sort_area_size, we

wrote 1,565 blocks to disk in sort runs that were typically 62 blocks each and then had to reread

them to merge them. On the other hand, although the results from v$tempstat reported the

same number of blocks written and read, the number of write requests was reported as 269 and

the number of read requests as 993. It would be interesting to check what type of writes and

reads actually took place, how large they were, and whether they can be adjusted.

In the code extract from the original demonstration script, one of the events that I enabled

was event 10046—the “extended trace” event—enabled at level 8 so that I could track the wait

states that showed up. Running tkprof against this trace file, I got the following results for the

main query:

Event waited on Times Max. Wait Total Waited

-- Waited ---------- ------------

direct path write 2 0.00 0.00

direct path read 435 0.59 15.00

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 369

This isn’t a good match for the reads and writes recorded against the temporary files. So I

took a close look at the trace file itself. The following lines are eight consecutive lines from a

trace file for a typical test run. I have put in a couple of blank lines to clarify the change of function:

WAIT #1: nam='db file scattered read' ela= 33985 p1=5 p2=1847 p3=6

WAIT #1: nam='db file sequential read' ela= 246 p1=5 p2=1875 p3=1

WAIT #1: nam='direct path write' ela= 6 p1=201 p2=16799 p3=6

WAIT #1: nam='direct path write' ela= 22 p1=201 p2=16805 p3=2

WAIT #1: nam='direct path read' ela= 293 p1=201 p2=16792 p3=2

WAIT #1: nam='direct path read' ela= 20087 p1=201 p2=19206 p3=2

WAIT #1: nam='direct path read' ela= 6655 p1=201 p2=19081 p3=2

WAIT #1: nam='direct path read' ela= 3685 p1=201 p2=19144 p3=2

The first two lines are the tail end of reading the table—typically multiblock reads against

data file 5 (p1 = 5) as we scan the table, with one single-block read to catch the last block of the

table.

The next two lines are the only reported waits for writes to the temporary tablespace (file 201

on my test system). On several tests of the script, the number of writes reported varied only very

slightly—with a maximum of four writes appearing in just one test run. The last reported write

in every test was two blocks, the rest were always six blocks.

TEMPORARY FILE NUMBERING

Numbering for temporary files may seem a little odd. If you subtract the value of parameter db_files from

the number recorded in the trace file, you get the file number recorded in v$tempfile. Alternatively, you can

query x$kcctf for column tfafn to list the Temporary File Absolute File Numbers.

Oracle can use a form of asynchronous write mechanism for direct path writes (if the oper-

ating system supports this feature), sending a few batches of blocks to the I/O subsystem, and

then checking back a little later to see if the batches have been written. Some of the details of

this activity are visible in the 10032 trace for this test, where we see the statistics about direct

writes and direct reads (the following is an extract). I assume the figures for Write slots used

and Number of read slots tell us how many asynchronous calls Oracle can make before cycling

back to see whether a batch has been written or read. I’ve added a couple of lines to this sample

that didn’t actually appear in my first test, and are relevant only during multipass operations:

---- Direct Write Statistics -----

Write slot size 49152

Write slots used during in-memory sort 2

Write slots used during merge -- only in multipass

Number of direct writes 268

Num blocks written (with direct write) 1565

Waits for async writes -- did not appear in 9i

370 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

---- Direct Read Statistics ------

Size of read slots for merge phase -- only in multipass

Number of read slots for merge phase -- only in multipass

Size of read slots for output 16384

Number of read slots for output 64

Number of direct sync reads 435

Number of blocks read synchronously 461

Number of direct async reads 558

Number of blocks read asynchronously 1104

Notice how the number of direct sync reads (435) in the 10032 statistics matches the

number of direct read waits reported in the 10046 trace file. Moreover, the total number of

reads (435 + 558) reported in the 10032 trace matches the number of reads reported in the

v$tempstat file statistics (993).

It’s a pity that the number of direct writes in the 10032 trace (268) doesn’t quite match

the number of writes reported in v$tempstat (269), but the 9i trace was missing a line about

async writes that appeared in the 8i and 10g traces, so perhaps the discrepancy is a simple

accounting error somewhere in the async code.

Going back to the 10046 trace, the last four lines from the trace show Oracle rereading

blocks from the sort segment to merge them. The p2 value listed in these four lines is the starting

block number in the file for the read, and shows that Oracle is jumping all over the place in the

file; but there were 26 consecutive read waits at the start of the list, corresponding to the 26 lines

saying Merging run at mmmm for nn blocks in the 10033 trace.

The p3 value is the number of blocks read. After starting with two blocks for each read (the

limit set by the sort_multiblock_read_count), all subsequent reads in the trace file were just

one block each—and they left gaps all over the place in the sort runs that had previously been

written, which is probably the effect of having lots of read slots for output available for async

read requests.

Given the reports of asynchronous writes and reads in the 10032 trace, it is no surprise

that we can’t get the numbers to match up. In fact, we even find that the number of read waits

in the 10046 trace shows quite clearly that sometimes we end up waiting for async reads, as

well as sync reads.

Cost of Sorts
Once you know how sorting works, it is possible to look at the numbers that the optimizer

produces to estimate the cost of a sort, and try to invent a rationale that would explain how

those numbers have been generated. Of course, there are four different scenarios to deal with

if you want complete coverage:

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 371

workarea_size_policy = manual CPU costing disabled (8i style)

workarea_size_policy = auto CPU costing disabled (default 9i style)

workarea_size_policy = manual CPU costing enabled (common 9i style)

workarea_size_policy = auto CPU costing enabled (strategic 9i and default 10g style)

Then you have to worry about the problem of generalization: Is there anything different for

sort (aggregate), what about sorting to create an index; and is the cost of sorting in a sort/merge

join in any way different from a simple sort? Finally, of course, there are the O/S issues—does

the costing mechanism make any allowance for the differences between 32-bit and 64-bit

platforms or the availability of asynchronous I/O?

And before I say anything about how the optimizer calculates the cost of sorts, I would like

to draw your attention to a hidden parameter that appeared in 9i, _new_sort_cost_estimate.

The default value for this parameter is true, and the description reads enables the use of new

cost estimate for sort.

Inferring the actual algorithms of the optimizer by checking the results from controlled

experiments is virtually impossible—especially when there are so many changes between

releases, and so many little tweaks that might be due to version, might be bugs, or might be

special cases. I’m not claiming a complete understanding of the costs for sorts and merge

joins—but the following notes may help you deal with problems.

10053 trace

We’ll start with the trace event I set in the very first test—the CBO or 10053 trace. When I had

a manual workarea_size_policy, a sort_area_size of 1MB, and CPU costing disabled, the critical

sections of the trace file look like this:

SINGLE TABLE ACCESS PATH

 TABLE: T1 ORIG CDN: 1048576 ROUNDED CDN: 1048576 CMPTD CDN: 1048576

 Access path: tsc Resc: 266 Resp: 266

 BEST_CST: 266.00 PATH: 2 Degree: 1

Join order[1]: T1[T1]#0

ORDER BY sort

 SORT resource Sort statistics

 Sort width: 29 Area size: 712704 Max Area size: 712704 Degree: 1

 Blocks to Sort: 2311 Row size: 18 Rows: 1048576

 Initial runs: 27 Merge passes: 1 IO Cost / pass: 2711

 Total IO sort cost: 2511

 Total CPU sort cost: 0

 Total Temp space used: 33711000

Best so far: TABLE#: 0 CST: 2777 CDN: 1048576 BYTES: 7340032

372 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

I have included the single-table access path in the extract to show you the cost of the full

tablescan (266) that Oracle used to acquire the data that was to be sorted.

The last line printed shows the best cost so far as 2,777, which is the sum of 266 (the tablescan

cost) and 2,511 (the Total IO sort cost). We need to understand how the optimizer derives the

value 2,511 for the Total IO sort cost.

Before getting into the difficult bits, I’d like to explain the other numbers that appear in the

second section of the output. In order:

• Sort width: This is the same as the max intermediate sort width we saw in the 10032 trace.

• Area size: This is the amount of memory available for processing the data. Our

sort_area_size was 1MB, so the size reported here seems a little small. In the 8i-style

calculations, the optimizer allows 10% (rounded to an exact multiple of the block size) of

the sort_area_size for write buffers. This still leaves a lot missing—which according to

my theory is the allowance built into the model for the binary insertion tree. Subtract 10%

(rounded to the next complete block) from the initial value, and then subtract 25% of the

rest for the sort tree: 1,048,576 bytes = 128 blocks (at 8KB); subtract 13 blocks (10%) and

you get 115 blocks; subtract 25%, and you get 86.25 blocks—rounding up to the nearest

block this is 87 blocks—712,704 bytes, which is what we see here. Note, however, that

this 25% allowance does not change as the row size changes (which it probably ought to

if my theory were correct); nor does it change as you move from 32-bit Oracle to 64-bit

Oracle.

• Max Area size: Since this is a 9i trace file, the Area size reports the minimum allocation

size available based on the setting of the pga_aggregate_target, and the Max area size

reports the maximum area that the session will be allowed. Since this test case is running

8i-style, using the manual workarea size policy, the Area size and Max area size are

identical. When the two values differ, the calculation of cost seems to be based on the

Max area size, rather than the Area size.

• Degree: If you are allowing parallel execution, you will get two completely separate, iden-

tically structured sections of trace file showing the cost calculations for the sort. One will

show degree 1, the other will show the degree of parallelism set for the query (which may

be derived from a hint, a specific degree of parallelism on a table, or the automatic

degree dictated by Oracle if you have enabled parallel automatic tuning).

• Blocks to Sort: A measure of the data to be sorted. Derived as Row size * Rows / block

size. If you have enabled parallelism, the value for Blocks to Sort in the second (parallel) set

of figures will be the value from the first (serial) set of figures divided by the degree.

• Row size: The optimizer’s estimate of the average size of the rows to be sorted. Allowing

for a couple of little adjustments and variations, this is derived from column

avg_col_length of view user_tab_columns, and is usually (12 + sum(avg_col_length) +

(n – 1)) (where n is the number of columns to be sorted). The fixed value 12 covers the

cost of the tree node quite nicely, but the rest of the formula seems inappropriate as we

have already seen that our 6 bytes of column data had a 2-byte column overhead and a

4- byte row overhead added. It’s just another spot where the model for calculation

doesn’t quite agree with the run-time activity.

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 373

DIFFERENCES BETWEEN DBMS_STATS.GATHER_TABLE_STATS() AND ANALYZE

One difference between these two methods of gathering statistics is that the avg_col_len generated by the

dbms_stats package includes the length byte, but the analyze command does not.

Since the Row size used by the sort calculation uses the sum(avg_col_len) from view

user_tab_columns, this means that the cost of a sort will be slightly higher following a call to dbms_stats

than it would be if you carried on using the analyze command. (The difference is also relevant to hash joins.)

There are lots of ways that the row size can be a bad estimate. For example, if you use a simple function

of two columns (e.g., substr(col1 || col2,5,2)) the optimizer will add the column lengths of both

columns in the calculation when it “obviously” ought to use the constant 2.

• Rows: This is the 1,048,576 that is the computed (filtered) cardinality for the table. Again,

if you have enabled parallelism, the value in the second (parallel) set of figures will be the

value from the first (serial) set of figures divided by the degree. Because the number of

rows is scaled down while the Area size may stay unchanged, the cost of a parallel sort

can easily be much lower than the cost of a serial sort—even to the point where it is lower

than the serial cost divided by the degree.

• Initial runs: The optimizer’s estimate of the number of sort runs that will be dumped

to disk. You can derive this as Blocks to Sort * block size / Max Area size. (2,311 * 8,192

/ 712,704 = 26.56). In this example, the optimizer has managed to get the right (observed)

result by using a strange number for the area size, and a wrong number for the row size.

Both values (Blocks to Sort and usable Area size) are larger than what actually

occurs at run time.

• Merge passes: Luckily, the Initial runs is less than the Sort width, so the optimizer has

decided that all the runs can be merged in a single pass. This is the significance of Merge

passes. Unfortunately, it always seems to be at least one—even for an in-memory sort.

This figure counts the number of times the entire data set will be written to and read

back from disk if you go into a multipass sort. This is not the same as the number of

merges recorded in the 10032 trace—a single merge pass (from 10053) could require

many merges (from 10032). Imagine you had 15 sort runs on disk, but could only read

three at a time, then the first merge pass would require five (15 / 3) merges and produce

five larger sort runs on disk.

• IO Cost / pass: The cost of doing a single merge pass. (In future I will refer to this as

IO cost per pass to avoid confusion when I want to use the division symbol.) This ought

to be a number that reflects the need for the writing and rereading that has to be done if

the sort cannot be completed in memory. If we have a onepass workarea execution, then

we will have dumped the entire data set once, and read it once to merge it. If we couldn’t

merge all the data in a single pass, we will have dumped it into larger runs on disk by the

end of the first merge attempt, and then reread again to merge the larger dumps. Although

there is some scope for optimization with multiple merges, we have to keep dumping

the entire data set time and time again—so we only need to know how much extra I/O

374 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

we do when we dump it once, and multiply by the number of passes it takes to get to the

final merge. This figure is the one that we most need to understand, and one subject to a

lot of change with versions and features. The sort_multiblock_read_count will affect it

in 8i, but not in 9i, where the parameter value seems to be ignored.

• Total IO sort cost: Presumably this is supposed to combine the cost per pass with the

number of passes—but before the introduction of CPU costing, this always seemed to be

smaller than the cost per pass on a onepass merge. A typical result would be (Blocks to

Sort + IO cost per pass * Merge passes) / 2 as it is in this example (and the fixed

value of 2 in this formula is not there as a consequence of the deprecated parameter

_sort_multiblock_read_count). When CPU costing is enabled, the cost usually seems to

be (Blocks to Sort + IO cost per pass * Merge passes)—although there are special

boundary conditions where the division by 2 reappears.

• Total CPU sort cost: The CPU component of the cost, measured in CPU operations—

which will be converted to a (relatively) small I/O equivalent cost later on in the trace file.

• Total Temp space used: In principle, the amount of temporary space we need for our

sort operation. We actually used 1,565 blocks (12.5MB) rather than the 32MB reported

here. Bear in mind, though, that the optimizer has estimated 2,311 blocks (18MB) to be

sorted, which reduces the error somewhat.

The trace extract shown previously comes from 9i emulating the model of 8i, but if we

switch to the strategic 9i configuration (CPU costing enabled, and workarea_size_policy set to

auto), we see a number of significant changes to the trace file.

In the following extract, I have a pga_aggregate_target of 200MB, which results in the

_smm_min_size being 204KB and the _smm_max_size being 10MB. (0.1% and 5% respectively of

the target). I have also set the system statistics (using the dbms_stats.set_system_stats()

procedure) in a way that causes the calculation of tablescan costs to mimic the arithmetic used

for tablescans when CPU costing is disabled and the db_file_multiblock_read_count is set to 8

(see script sort_demo_01b.sql in the online code suite).

SINGLE TABLE ACCESS PATH

 TABLE: T1 ORIG CDN: 1048576 ROUNDED CDN: 1048576 CMPTD CDN: 1048576

 Access path: tsc Resc: 283 Resp: 283

 BEST_CST: 283.00 PATH: 2 Degree: 1

Join order[1]: T1[T1]#0

ORDER BY sort

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760 Degree: 1

 Blocks to Sort: 2311 Row size: 18 Rows: 1048576

 Initial runs: 2 Merge passes: 1 IO Cost / pass: 580

 Total IO sort cost: 2891

 Total CPU sort cost: 1011773433

 Total Temp space used: 33711000

Best so far: TABLE#: 0 CST: 3276 CDN: 1048576 BYTES: 7340032

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 375

Final - All Rows Plan:

 JOIN ORDER: 1

 CST: 3276 CDN: 1048576 RSC: 3275 RSP: 3275 BYTES: 7340032

 IO-RSC: 3157 IO-RSP: 3157 CPU-RSC: 1181444018 CPU-RSP: 1181444018

The cost of the tablescan in the single-table access path has gone up from 266 to 283. Although

it is not explicitly displayed in this trace file, we can determine (by doing a separate 10053 trace

of a simple select against the table) that the difference of 17 is the calculated CPU cost of

scanning the table.

Now look at the second section of the output: first, we can see that the Area size is down

to 204KB, and the Max area size is 10MB—exactly as expected. But pause for thought—when

we set a sort_area_size, we used to see about 67.5% (75% of 90%) of that value appearing in

these columns, but here we are seeing the entire 100%; does this mean that the write buffers

and insertion tree are catered to elsewhere, or is it simply that the report is being used differently?

In fact, if we adjust the number of rows used in the test, we find that the number of initial

runs drops to one—and the number of merge passes to zero—only when Rows * Row size gets

down to the value of Area size (not the Max area size). This tells us that there is a special case

formula for predicting in-memory sorts, but it also hints that the optimizer is behaving as if the

various overheads and I/O buffers fall outside the memory allocation for sorting.

Note also that the sort width is 58, which is what you would get with a sort_area_size of

around 2MB using the manual workarea_size_policy. With a sort_area_size of 204KB (or

rather 320KB, which would report an area size of about 204KB), the sort width would be 9 and

the initial run count would be 86—leading to three merge passes. With a sort_area_size of

10MB (or rather 15.1MB, which would report an area size of about 10MB), the sort width would

be 426 with a run count of two.

Despite our attempts to pick a pga_aggregate_target that could emulate a sort_area_size

of 10MB, we cannot see figures that allow us to align the two parameters in an obvious way.

To cap it all, whatever we see in the 10053 trace, remember that the original 10032 trace

for this example reported a sort_multiblock_read_count of 31 and a max intermediate merge

width of 5. The optimizer assumptions do not form an accurate model of the actual run-time

activity.

Clearly it is not going to be easy to reverse engineer the algorithm that the cost based opti-

mizer uses to derive a cost for a sort. So before trying to untangle the knotty problem of how the

optimizer works out the IO cost per pass, I’d like to run a few more test cases and comment

on the results.

Comparisons
The scripts I have used to compare the costs for sorting in the four different environments

are very similar to the scripts I used in Chapter 12. I have a pair of scripts in the online code

suite called pat_dump.sql and sas_dump.sql that run the following query after setting the

pga_aggregate_target or sort_area_size respectively:

376 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

select

 sortcode

from

 (select * from t1 where rownum <= 300000)

order by

 sortcode

;

These scripts are driven by four other scripts—two for pat_dump.sql, and two for

sas_dump.sql. The calling scripts are pat_cpu_harness.sql, pat_nocpu_harness.sql,

sas_cpu_harness.sql, sas_nocpu_harness.sql. As you can infer from the names, two of the

scripts enable CPU costing, two of them don’t.

The scripts that enable CPU costing use the following PL/SQL to mimic the normal arithmetic

of a system that is not using CPU costing when the db_file_multilblock_read_count is set to

eight blocks:

begin

 dbms_stats.set_system_stats('MBRC',6.59);

 dbms_stats.set_system_stats('MREADTIM',10.001);

 dbms_stats.set_system_stats('SREADTIM',10.000);

 dbms_stats.set_system_stats('CPUSPEED',1000);

end;

/

To draw some valid comparisons between traditional costing based on the sort_area_size

and costings based on the pga_aggregate_target, I have assumed that the 5% rule is appropriate—

for example, aligning a 1MB sort_area_size with a 20MB pga_aggregate_target.

The basic model that appeared in all the 10053 trace files was

• With CPU costing disabled: Total IO sort cost = (Blocks to sort + IO cost per pass *

Merge passes) / 2

• With CPU costing enabled: Total IO sort cost = (Blocks to sort + IO cost per pass *

Merge passes)

Since the Blocks to sort was a constant (588) throughout the tests, the total cost of the

sort is easy to grasp if we can understand what’s going on with the IO cost per pass.

Table 13-4 reproduces some of the interesting results; the four figures in each column are

IO cost per pass / Initial runs / Merge passes, and then the Total IO sort cost.

Table 13-4. Comparing Costs in Different Environments

Target Sort

Memory

S_A_S

No CPU Costing

S_A_S

CPU Costing

P_A_T Assuming

5% Limit

No CPU Costing

P_A_T Assuming

5% Limit

CPU Costing

64KB 784 / 131 / 5 =>2,254 148 / 131/ 5 => 1,328 n/a n/a

128KB 784 / 56 / 4 => 1,862 148 / 56 / 4 => 1,180 n/a n/a

256KB 756 / 27 / 2 => 1,050 148 / 27 / 2 => 884 n/a n/a

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 377

There are a number of interesting anomalies here, and, as we saw with the costing of hash

joins, the changes in cost as you try to change your strategy are probably more important than

the exact details of how specific costs are calculated.

The first point to pick out is that when you try to convert from using the sort_area_size to

the pga_aggregate_target, the cost figures don’t align very well if you work with the 5% figure

that is quoted as the limiting workarea size. In fact, if you cross-check the first few costs for

this sort in columns 2 and 4 (the two “No CPU Costing” columns), you see that the figures for

pga_aggregate_target might be a better match for the sort_area_size if you assumed a 1%

limit, rather than the 5% limit.

The next point to pick out is that if you are currently running with manual work areas, and

decide to try enabling CPU costing without switching to automatic work areas, the cost of some

sorts will drop dramatically. In fact, this behavior looks to me like a correction in the costing

model—the drop to zero cost occurs at about the point in the model where the sort will complete

entirely in memory. (It is unfortunate that the model doesn’t necessarily give a true image of

the memory required—but at least the model becomes self-consistent if this drop does occur.)

The third point about these figures shows up in the larger memory sizes—I had about 2MB

of data to sort (300,000 rows of 6 bytes each if you ignore the overheads introduced by the

sorting), which turns into about 7MB if you allow for all the extra bytes and pointers. But even

when the allowed memory was 30MB, the optimizer assigned a large cost to a sort that I knew

would complete in memory. There are numerous little oddities with three of the four models

320KB 720 / 22 / 2 => 1,014 148 / 22 / 2 => 884 n/a n/a

384KB 696 / 18 / 2 => 990 148 / 18 / 2 => 884 n/a n/a

448KB 726 / 16 / 2 => 1,020 148 / 16 / 2 => 884 n/a n/a

512KB 714 / 14 / 1 => 651 148 / 14 / 1 => 736 882 / 10 / 4 => 2,058 148 / 10 / 4 => 1,180

640KB 687 / 11 / 1 => 638 148 / 11/ 1 => 736 882 / 8 / 3 => 1,617 148 / 8 / 3 => 1,032

1,024KB 693 / 8 / 1 => 643 148 / 8 / 1 => 736 735 / 5 / 2 => 1,029 148 / 5 / 2 => 884

1,536KB 686 / 5 / 1 => 637 148 / 5 / 1 => 736 756 / 4 / 1 => 672 148 / 4 / 1 => 736

2,048KB 687 / 4 / 1 => 638 148 / 4 / 1 => 736 706 / 3 / 1 => 647 148 / 3 / 1 => 736

3,072KB 686 / 3 / 1 => 637 148 / 3 / 1 => 736 699 / 2 / 1 => 644 148 / 2 / 1 => 736

4,096KB 696 / 2 / 1 => 642 148 / 3 / 1 => 736 696 / 2 / 1 => 642 148 / 2 / 1 => 736

6,976KB 678 / 1 / 1 => 633 0 / 1 / 0 => 0 700 / 2 / 1 => 644 148 / 2 / 1 => 736

10,240KB 720 / 1 / 1 => 654 0 / 1 / 0 => 0 687 / 2 / 1 => 638 148 / 2 / 1 => 736

15,360KB 686 / 1 / 1 => 637 0 / 1 / 0 => 0 686 / 2 / 1 => 637 148 / 2 / 1 => 736

20,480KB 764 / 1 / 1 => 676 0 / 1 / 0 => 0 683 / 2 / 1 => 636 148 / 2 / 1 => 736

30,720KB 692 / 1 / 1 => 640 0 / 1 / 0 => 0 700 / 2 / 1 => 644 148 / 2 / 1 => 736

Table 13-4. Comparing Costs in Different Environments

Target Sort

Memory

S_A_S

No CPU Costing

S_A_S

CPU Costing

P_A_T Assuming

5% Limit

No CPU Costing

P_A_T Assuming

5% Limit

CPU Costing

378 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

that result in sorts that will become in-memory sorts at run time being given a cost that seems

to be unreasonably high.

There are a couple of extra points, relevant to the CPU costing options, that aren’t visible

in this table. When you change the MBRC (achieved multiblock read count), the cost of the sort

changes—the cost of the IO is affected by the assumed size of the IO requests, though not in a

completely linear fashion as far as I could tell. When you change the mreadtim (time for a typical

multiblock read in milliseconds), the cost of the sort changes—and in the test case, I had mini-

mized the mreadtim, which means that the costs of sorts (especially the in-memory sorts) will

be even higher when you have realistic times in your system.

There are also a couple of special cases—boundary conditions—on the system statistics,

which make the optimizer change strategies. For example, if mreadtim / sreadtim is greater than

MBRC, then the optimizer changes the formula for calculating the cost of the sort. In one test

case, I got a cost of 5,236 for a sort when my mreadtim was 65 milliseconds, and a cost of 2,058

when I changed the mreadtim to 66 milliseconds—and I don’t think you would expect the cost

of a sort to drop sharply when the disk response time has slowed down. (And this behavior is

not consistent with the way that a tablescan cost is calculated—in that case, an over-large

mreadtim is not treated as an anomaly.)

Another anomaly that showed up was the problem of getting the optimizer to cost correctly for

an in-memory sort when using the automatic workarea_size_policy and pga_aggregate_target.

The following extract comes from the 10053 trace file when I ran my test case with my

pga_aggregate_target set to 2GB:

ORDER BY sort

 SORT resource Sort statistics

 Sort width: 598 Area size: 1048576 Max Area size: 104857600 Degree: 1

 Blocks to Sort: 588 Row size: 16 Rows: 300000

 Initial runs: 2 Merge passes: 1 IO Cost / pass: 148

 Total IO sort cost: 736

 Total CPU sort cost: 270405074

 Total Temp space used: 7250000

Notice how the Area size: is set to just 1MB. This seems to be a hard limit set by parameter

_smm_min_size—even though the run-time engine will happily take much more memory. But it

is this limit that introduces a boundary condition on the costing of the sort—so the optimizer

will not cost this sort as an in-memory sort as it needs a minimum 300,000 * 16 bytes = 4.6MB,

which is larger than the _smm_min_size.

In this example, I had to restrict the number of rows in my query to just 65,536 before the

optimizer would cost the sort as an in-memory sort (at which point the IO cost per sort dropped to

zero). The fact that the I/O component of the sort cost can drop to zero for this configuration

of pga_aggregate_target and CPU costing is, of course, a good thing because it is reasonably

representative of real life. This is definitely a plus point for CPU costing if you are running an

OLTP system, as you are likely to find that SQL operating in the scale of the “small report” is

probably going to fall into the range of calculated and actual optimal sorting. The fact that the

I/O component of cost drops to 0 only when the estimated volume of data falls below such an

extreme limit is not such a good thing—and may encourage people to start tweaking hidden

parameters in the hope of making the optimizer behave a little more sensibly.

I believe that the strategic option is to enable CPU costing, and take advantage of the auto-

matic workarea_size_policy. But I do think you are likely to have problems in transition, and

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 379

need to do a thorough regression test. As a starting guess for the pga_aggregate_target, the

best figure for minimal changes to current execution plans may be about 100 times your current

setting of sort_area_size (rather than the 20 times implied by the known 5% limit that applies

to run-time sizing of work areas). I would, however, advise you to consider using session-based

code to switch to manual work area sizing and explicit values for the sort_area_size for critical

batch-like tasks.

In many cases, the changes in costs for sorting are likely to leave execution plans unchanged

because most uses of sorting are due to order by, group by, or distinct, which have to be done

whatever the cost (though watch out for the hashing options for group by and distinct that

10gR2 brings). There will be cases though where paths may change dramatically, perhaps

swapping from merge to hash or hash to merge, because of a sharp (and unreasonable) change

in cost. You may also find cases where subquery unnesting, or complex view merging, suddenly

does (or does not) happen the way it used to because of a change in the cost of a distinct

requirement that wasn’t even directly visible in your SQL.

Merge Joins
Finally, we can address the mechanism and cost of the merge join—usually called the sort/

merge join because it requires both its input to be sorted on the join columns.

The concept is very simple and, like the hash join, starts by decomposing the join into two

independent queries, before combining the separate results sets:

• Acquire the first data set, using any access and filter predicates that may be relevant, and

sort it on the join columns.

• Acquire the second data set, using any access and filter predicates that may be relevant,

and sort it on the join columns.

• For each row in the first data set, find the start point in the second data set, and scan

through it until you hit a row that doesn’t join (at which point you ought to know that

you can stop because the second data set is in sorted order).

In Chapter 12, I pointed out that a hash join was basically a back-to-front nested loop into

a single-table hash cluster. Read the description of a merge join again, and you realize that it’s

nearly a nested loop join from an index organized table into an index organized table (although

the sorted data sets aren’t actually indexed, and Oracle may be using a binary chop to find the

start point for each pass through the second data set). Just like the hash join, the merge join

breaks a single query into two separate queries that initially operate to acquire data; unlike the

hash join, the first query need not complete before the second query starts.

The Merge Mechanism

Depending on your point of view, you could decide that the number of variants for the mechanics

of a merge join is anything between one and five. Having decided on the number, you can then

double it to represent the cases where the first data set can be acquired in presorted order—for

example, because of a convenient index—and need not be fully instantiated before the second

set is acquired. (Script no_sort.sql in the online code suite is an example that demonstrates

how you can prove this point.)

380 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

If you take the view that there are many variations to consider, you would probably come

up with a list like the following:

• One to one

• One to many one on an equality (e.g., parent/child join)

• One to many on a range (e.g., t2.dt between t1.dt - 3 and t1.dt + 3)

• Many to many on an equality

• Many to many on a range

Pictorially, you could represent the options as shown in Figure 13-2, once the data sets had

been sorted.

Figure 13-2. Variations on merge joins

But if you wanted to view the merge join as a single possible strategy, you could argue that

the mechanism is always the same—for each row in the first input, find the first legal join row

from the second input, and walk through the second input in order until you just overshoot the

last legal join row.

When you look at these pictures, it is fairly obvious that the first two samples are somehow

simpler than the last three—and the last three aren’t really very different from each other. In

the first two examples, the run-time engine can simply walk down the two stacks and keep

going in order, never stepping backwards. In the more complex examples, the run-time engine

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 381

has to be able to step backwards in the second data stack each time it moves forwards a row in

the first data stack.

One side effect of this is that the merge join is not completely symmetrical—despite

comments in the manual, the second data is always fully acquired, sorted, and instantiated;

it cannot be acquired piece-wise (for example, by walking an index) like the first data set. Given

the increasing complexity of the work that has to be done, especially in the last three joins, we

might expect the cost of the merge join to vary with the type.

Script merge_samples.sql in the online code suite demonstrates queries that match the

pictures, and produces the execution plan results:

alter session set hash_join_enabled = false;

create table t1

as

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 3000

)

select

 rownum id,

 rownum n1,

 trunc((rownum - 1)/2) n2,

 lpad(rownum,10,'0') small_vc,

 rpad('x',100,'x') padding

from

 generator v1,

 generator v2

where

 rownum <= 10000

;

alter table t1 add constraint t1_pk primary key(id);

-- Create table t2 in the same fashion

-- Collect statistics using dbms_stats here

-- The following statement has different predicates,

-- corresponding to the five pictures in the diagram

select

 count(distinct t1_vc ||t2_vc)

from

 (

 select /*+ no_merge ordered use_merge(t2) */

 t1.small_vc t1_vc,

 t2.small_vc t2_vc

382 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

 from

 t1,

 t2

 where

 t1.n1 <= 1000 and t2.id = t1.id

 -- t1.n1 <= 1000 and t2.n2 = t1.id

 -- t1.n1 <= 1000 and t2.id between t1.id - 1 and t1.id + 1

 -- t1.n1 <= 1000 and t2.n2 = t1.n2

 -- t1.n1 <= 1000 and t2.n2 between t1.n2 - 1 and t1.n2 + 1

)

;

TEMPUS FUGIT

When testing 9i and 8i, I set hash_join_enabled to false to stop the optimizer from choosing a hash join

on the simple equality queries. Unfortunately, 10g ignored this setting—so I had to include the hints ordered

and use_merge(t2) to force the optimizer to use a merge join.

Things keep changing, and it’s a real nuisance how bits of code suddenly become obsolete and stop

working. Watch out, for example, for the parameter _optimizer_sortmerge_join_enabled, introduced

in 9i; one day it may silently default to false—and all your merge joins will change to nested loop or hash joins!

The surprising thing about the five different execution plans is that the final cost is the

same for all of them, even though there are slight variations in the plans and distinct changes

in the cardinality of the joins. For example:

Execution Plan (9.2.0.6 autotrace, no system statistics, 1 to 1 with equality)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=105 Card=1 Bytes=14)

1 0 SORT (GROUP BY)

2 1 VIEW (Cost=105 Card=1000 Bytes=14000)

3 2 MERGE JOIN (Cost=105 Card=1000 Bytes=34000)

4 3 SORT (JOIN) (Cost=38 Card=1000 Bytes=19000)

5 4 TABLE ACCESS (FULL) OF 'T1' (Cost=29 Card=1000 Bytes=19000)

6 3 SORT (JOIN) (Cost=68 Card=10000 Bytes=150000)

7 6 TABLE ACCESS (FULL) OF 'T2' (Cost=29 Card=10000 Bytes=150000)

Execution Plan (9.2.0.6 autotrace, no system statistics, many to many with range)

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=105 Card=1 Bytes=14)

1 0 SORT (GROUP BY)

2 1 VIEW (Cost=105 Card=25002 Bytes=350028)

3 2 MERGE JOIN (Cost=105 Card=25002 Bytes=850068)

4 3 SORT (JOIN) (Cost=38 Card=1000 Bytes=19000)

5 4 TABLE ACCESS (FULL) OF 'T1' (Cost=29 Card=1000 Bytes=19000)

6 3 FILTER

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 383

7 6 SORT (JOIN)

8 7 TABLE ACCESS (FULL) OF 'T2' (Cost=29 Card=10000 Bytes=150000)

Even though the cardinality of the join (see line 3) changes from an estimated 1,000 to an

estimated 25,002, the cost of the query stays constant at 105. And that cost is essentially the cost

of producing two sorted sets of data—lines 4 and 6 in the first plan: 38 + 68 = 106 (the difference

between the sum and the total in the execution plan appears because explain plan reports

every step to the nearest whole number, but the arithmetic carries forward with exact fractions

retained).

Chapter 10 had an example of a merge join with a range test to demonstrate some of the

oddities in the calculations for join cardinality. At the time I postponed any explanation of an

odd filter line that appeared in the execution plan. The same filter line has appeared in the

preceding plan, and now is the time to explain it.

If you switch from autotrace to dbms_xplan.display() so that you can pick up the access

predicates and filter predicates, the predicates that go with the preceding plan—identified by

line number—are

5 - filter("T1"."N1"<=1000)

6 - filter("T2"."N2"<="T1"."N2"+1)

7 - access("T2"."N2">="T1"."N2"-1)

 filter("T2"."N2">="T1"."N2"-1)

You can also run the query then examine the view v$sql_plan_statistics to find out how

many times Oracle executed lines 6, 7, and 8, and the number of rows supplied from each

row source.

The filter operation (line 6) was executed 1,000 times to produce 5,996 rows (which is

reasonable—apart from the very first and last rows in the t1 selection, I was expecting six rows

in t2 for each row in t1).

The table access full of t2 (line 8) was executed once to produce 10,000 lines (which is

reasonable—we only scan the table once and get all the rows from it because there are no

simple restrictions).

The strange line is line 7—the sort line—which (according to v$sql_plan_statistics) gets

executed 1,000 times (effectively once for each row in table t1) and returns 9,502,996 rows!

Clearly something is not quite right in the way the execution plan is reporting to us. We

have not done 1,000 separate sorts, we did one sort to generate the data—at least, that’s what

the 10032 trace file tells us. The problem appears because we have done 1,000 separate accesses

into the sorted data, and our between clause has been turned into two separate predicates.

The access predicate in line 7 ("T2"."N2">="T1"."N2"-1) has told Oracle where to start in

the sorted data set; but the filter predicate in the same line has made Oracle check every row to

ensure that the predicate ("T2"."N2">="T1"."N2"-1) is still true—despite the fact that it has to

be because the data set is sorted. For every row in t1, Oracle has located the first relevant row

in the second sorted data set, and scanned from there to the end of the sorted data set. That’s

10,000 rows checked for the first row in t1; 9,998 rows checked for the second row in t1; 9,996

rows checked for the third row in t1; and so on—for a total of more than 9.5 million rows.

At line 6, the line with the filter operation, Oracle has then used the predicate

("T2"."N2"<="T1"."N2"+1) to discard all but six rows for each row from the t1 data set. It looks

as if the optimizer has turned the original between predicate into two separate predicates, and

384 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

then forgotten the special meaning of those two predicates (just as it once did when calculating

the cost of a simple between clause on a single table).

The optimizer should be able to use the predicate ("T2"."N2">="T1"."N2"-1) as the access

predicate to start ranging through the second data set, and the predicate

("T2"."N2"<="T1"."N2"+1) as the filter predicate in the same line. This predicate should be

tested against each row during the ranging step, and the ranging process should stop the first

time the test fails—not run to the end of entire data set. Just to complete the picture (although

it’s a complete mess and virtually illegible), Figure 13-3 compares what Oracle should be doing

with what Oracle is doing in this case:

Figure 13-3. Range-based merge join

The CPU penalty for this error can be enormous, and in this example, it was actually

cheaper to run the query as a nested loop with 1,000 tablescans of t2 rather than doing the

merge join, which should have been more efficient.

A Merge Join Without the First Sort

As I have already pointed out, the manuals do suggest that if both data sets can be acquired in

order, then neither set has to be sorted. In fact, the 10053 trace shows that the only “no-sort”

option considered by the optimizer is for the outer (first) table. This results in two costing

sections for the merge join, which we will examine next.

One of the examples from script merge_samples.sql in the online code suite is able to

acquire the data in the first table by a rather expensive indexed access path, so produces the

following trace when costing the join:

SM Join

 Outer table:

 resc: 29 cdn: 9001 rcz: 15 deg: 1 resp: 29

 Inner table: T1

 resc: 29 cdn: 9001 rcz: 15 deg: 1 resp: 29

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 -- Outer table costing

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 385

 SORT resource Sort statistics

 -- Inner table costing

 Merge join Cost: 127 Resp: 127

SM Join (with index on outer)

 Access path: index (scan) -- identifies index path used

 Index: T2_PK

 TABLE: T2

 RSC_CPU: 0 RSC_IO: 182

 IX_SEL: 9.0009e-001 TB_SEL: 9.0009e-001

 Outer table:

 resc: 182 cdn: 9001 rcz: 15 deg: 1 resp: 182

 Inner table: T1

 resc: 29 cdn: 9001 rcz: 15 deg: 1 resp: 29

 using join:1 distribution:2 #groups:

 SORT resource Sort statistics

 -- Inner table costing only

 Merge join Cost: 246 Resp: 246

Note that the second SM Join calculation will only appear if the indexed access path had

not already been selected as the cheapest way of acquiring the first data set anyway—modify

the example to select only 1,000 rows rather than 9,000 rows from the first table, and the no-sort

option is selected automatically—and you will notice that the execution plan then shows a sort

line only for the second table.

Execution Plan (9.2.0.6 autotrace)

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=53 Card=1 Bytes=14)

1 0 SORT (GROUP BY)

2 1 VIEW (Cost=53 Card=999 Bytes=13986)

3 2 MERGE JOIN (Cost=53 Card=999 Bytes=29970)

4 3 TABLE ACCESS (BY INDEX ROWID) OF 'T1' (Cost=22 Card=1000 Bytes=15000)

5 4 INDEX (RANGE SCAN) OF 'T1_PK' (UNIQUE) (Cost=4 Card=1000)

6 3 SORT (JOIN) (Cost=31 Card=1000 Bytes=15000)

7 6 TABLE ACCESS (BY INDEX ROWID) OF 'T2' (Cost=22 Card=1000 Bytes=15000)

8 7 INDEX (RANGE SCAN) OF 'T2_PK' (UNIQUE) (Cost=4 Card=1)

Even when the optimizer selects a no-sort merge, you will find that the cost of the merge

join is still (very close to) the sum of the two separate accesses to the table. In this case, you can

see that the cost at line 3 is the sum of the costs at lines 4 and 6 (53 = 22 + 31).

The Cartesian Merge Join

In Chapter 6, we came across an example where the optimizer used transitive closure to turn a

perfectly reasonable join into a Cartesian merge join. And I mentioned at the time that the cost

of the join was a little surprising. It’s time to take a look at what has happened in this case (see

script cartesian.sql in the online code suite):

386 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

select

 count(t1.small_vc),

 count(t2.small_vc)

from

 t1, t2

where

 t1.n1 = 5

and t2.n1 = 5

;

Table t1 has 800 rows, and table t2 has 1,000 rows. In both tables, one-tenth of the

rows have n1 = 5. This is the execution plan for the preceding query—taken from view

v$sql_plan_statistics after using the alter session command to set the parameter

_rowsource_execution_statistics to true. (You can get the same view populated by setting

statistics_level to all, or sql_trace to true. The hidden parameter is just more precisely

targeted—but obviously should not be used on production systems.)

Id Starts Rows Plan (9.2.0.6 - v$sql_plan_statistics)

-- ------ ------ ---

 0 SELECT STATEMENT (all_rows) Cost (324,,)

 1 1 1 SORT (aggregate)

 2 1 8,000 MERGE JOIN (cartesian) Cost (324,8000,112000)

 3 1 80 TABLE ACCESS (analyzed) T1 (full) Cost (4,80,560)

 4 80 8,000 BUFFER (sort) Cost (320,100,700)

 5 1 100 TABLE ACCESS T2 (full) Cost (4,100,700)

The three figures in brackets at the end of each line are the (cost, cardinality, and bytes)

respectively—and as you can see, the cost of the merge join (line 2) is 324, which seems to be

the cost of the table scan in line 3 plus the cost of the buffer (sort) in line 4. But the cost of the

buffer sort seems to be the cost of the table scan in line 5 multiplied by the cardinality from line 3—

in effect, the costing for the Cartesian merge join seems to be very similar to the costing for a

nested loop, namely cost of first table + cardinality of first table * cost of second table.

The second and third columns show the last_starts and last_output_rows figures from

the dynamic performance view v$sql_plan_statistics: these appear to be telling us that the

buffer (sort) happened 80 times (once for each row acquired from table t1), and that 8,000 rows

were actually sorted. This is exactly the same behavior as we saw with the more normal many-

to-many range-based merge join—and is just as unbelievable. We may have visited the sorted

data 80 times, but did we really sort it 80 times? I hope not.

SORT AND BUFFER (SORT)

I haven’t yet worked out if there is any significant difference between these two options—the optimizer

doesn’t seem to use volume of data as the basis for choosing one over the other. The buffer (sort) that appears

in this Cartesian merge join used to be the standard sort operation when the test case ran under 8i, and no

other changes seem to have appeared at the same time.

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 387

Whatever misdirection we are receiving from the optimizer with the plan statistics, the

enormous cost of this query is clearly an error. Oracle has extracted a tiny amount of data from

the second table, packed it into memory, and then assigned the cost of the full tablescan to that

subset whenever it thinks it is going to use the data. We can see the source of this anomaly

when we look at the 10053 trace file. The critical section looks like this:

Join order[1]: T1[T1]#0 T2[T2]#1

Now joining: T2[T2]#1 *******

NL Join

 Outer table: cost: 4 cdn: 80 rcz: 7 resp: 4

 Inner table: T2

 Access path: tsc Resc: 4

 Join: Resc: 324 Resp: 324

 Best NL cost: 324 resp: 324

Join cardinality: 8000 = outer (80) * inner (100) * sel (1.0000e+000) [flag=0]

Join result: cost: 324 cdn: 8000 rcz: 14

Best so far: TABLE#: 0 CST: 4 CDN: 80 BYTES: 560

Best so far: TABLE#: 1 CST: 324 CDN: 8000 BYTES: 112000

Look carefully at this extract—I haven’t deleted any lines from it. The optimizer trace

shows nothing but the calculation for the nested loop join. I said that the cost of the merge join

seemed to be very similar to the costing of a nested loop, and it’s true—the optimizer is using

the nested loop cost as the cost of the merge join.

The upshot of this mechanism is that Cartesian merge joins are going to be given a very

high cost—which is a pity, really, because sometimes a Cartesian join will be a quick, efficient

starting point for a complex query, and the optimizer might choose to ignore it. So this is one

case where you may have to hint the SQL.

Strangely, this example is very similar to our very CPU-intensive earlier query that actually

examined 9.5 million rows. The difference is that this example has become a Cartesian join

because the join predicate disappeared under transitive closure. The earlier query did not lose

it’s joins predicate though transitive closure—so the arithmetic was completely different. In

one case we have a cost that is unreasonably high for a query that won’t do a huge amount of work;

in the other we have a cost that is small for a query that will burn up a massive amount of CPU.

Aggregates and Others
After looking at the effects of basic sorting and the merge join, it’s time say something about

other reasons that Oracle might have for sorting. For example, how should the costs of the

following queries compare (see script agg_sort.sql in the online code suite)?

select col1, col2 from t1 order by col1, col2;

select distinct col1, col2 from t1;

select col1, col2, count(*) from t1 group by col1, col2;

select col1, col2, count(*) from t1 group by col1, col2 order by col2, col1;

select max(col1), max(col2) from t1;

A typical execution plan for any of these five queries would have the following structure:

388 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

Execution Plan (9.2.0.6 autotrace, no system statistics)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=18 Card=5000 Bytes=20000)

 1 0 SORT (ORDER BY) (Cost=18 Card=5000 Bytes=20000)

 2 1 TABLE ACCESS (FULL) OF 'T1' (Cost=4 Card=5000 Bytes=20000)

The only significant change as you move from query to query is in line 1 of the plan, and

the differences can be summarized as shown in Table 13-5.

There are two anomalies to note in particular. The obvious one is that the final cost for the

max() query is much less than the final cost for all the other queries, which all have the same

cost. (In fact, when you enable CPU costing, you find that the other four queries also have

exactly the same CPU cost, despite the obviously different requirements for processing.)

In theory, you might expect Oracle to sort the data as the first step of any of these opera-

tions. However, the max() example can be optimized without sorting—despite the appearance

of the sort line in the execution plan. The run-time code simply has to scan the incoming data

and keep track of the largest value so far. The optimizer calculations reflect this operation

exactly.

If we look at the other operations, it is clear that the order by will need a sort. Similarly, the

distinct could be implemented by sorting the data, scanning the sorted result set, and reporting a

row only when it differed from the previous row. The optimizer doesn’t bother trying to put a

figure on the tiny CPU difference involved in the last step of this operation. The same approach

applies to the group by, except we maintain running totals (in this case a count) and pass forward

the totals along with the row data whenever the row differs from the previous row.

The second anomaly shows up when you examine the query that does the group by followed

by the order by—look carefully at the code, and you will see that my group by clause is on col1,

col2, but my order by clause is on col2, col1—the opposite way around.

It would be very easy to assume that Oracle would have to sort the data once to do the

group by, then sort it again to do the order by. However, the optimizer is smart enough to

determine that both the group by and the order by could be satisfied by a single sort operation.

Table 13-5. Sample Costs for Different Sorting Requirements

Requirement Optimizer Option Final Cost

order by sort (order by) 18

distinct sort (unique) 18

group by sort (group by) 18

group by … order by sort (group by) 18

max() sort (aggregate) 3

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 389

THE SQL MUST USE ORDER BY

We have been told endlessly that we should always include an order by clause if we want the data in a

specific order, and not rely on an accidental sort performed by the group by. Although this is a dictate that

we ought to follow unswervingly, that doesn’t mean the optimizer actually has to perform both operations if it

can find a cheaper alternative.

There is an interesting follow-up to this point, though. In 9i, Oracle introduced a new

algorithm for multicolumn aggregation. Script gby_onekey.sql in the online code suite demon-

strates the principle. I have generated a small random data set, and queried it with the following

SQL statement:

select

 col1, col2, count(*)

from

 t1

group by

 col1, col2

;

The output looks like this:

COL1 COL2 COUNT(*)

---- ---- ----------

A Y 1

B V 1

B Y 1

Y TO 1

Z DU 1

...

AD K 1

CC K 1

CE DZ 1

...

The results are not in order—a very clear, and simple, demonstration that you should

never trust a group by to do the implicit order by that you want. This little feature is controlled

by the hidden parameter _gby_onekey_enabled; set this to false and Oracle falls back to its old

behavior, which happens to produce the data in the “correct” order.

“GROUP BY” BUG

There is a slightly exotic bug relating to this new grouping mechanism that appears in some special cases of

sort/merge joins. MetaLink bug 3487660 applies. Essentially, there is a case where the optimizer assumes

that a group by implies an order by, and fails to do a sort on the first input to a merge join when it really

needs to do one.

390 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

So if 9i has acquired a different mechanism for dealing with the group by, what’s going to

happen when we change this query to include an order by immediately after the group by? Will

there be a second sort to get the data in the right order after the grouping has completed?

If we look at the execution plan, or the 10053 trace, there is no difference between what

we see from 8i and 9i; the plan still claims that it’s going to do nothing but a sort (group by),

so the answer appears to be no—but we know that the run-time engine doesn’t always do what

the optimizer says it’s going to. If we look at the session statistics, we find that they record one

sort, with exactly the right number of rows sorted—which seems to be a reasonable confirma-

tion of the execution plan. But how can Oracle manage to get the job done with just one sort?

The answer comes from part of the 10032 trace. Compare the two sets of statistics—the

first set comes from the query without the order by, the second set comes from the query with

the order by:

---- Sort Statistics ------------------------

Input records 50

Output records 50

Total number of comparisons performed 245

 Comparisons performed by in-memory sort 245

---- Sort Statistics ------------------------

Input records 50

Output records 50

Total number of comparisons performed 222

 Comparisons performed by in-memory sort 222

There really is just one sort, but the number of comparisons performed changes when I

include the order by. If you repeat the tests with the new feature disabled, you will find that

that Oracle is simply falling back to the original grouping mechanism when the order by clause

appears, so that it doesn’t have to do an extra sort to get the data in order.

A NEW GROUP BY IN 10GR2

One of the new features in 10gR2 is a hash group by operation (with a corresponding hash unique oper-

ation), which in principle could be much faster than a sort group by in many cases. It would be wise to

check your code to see if you still have any SQL where you are depending on the implicit sorting effect of a

group by to return the data in order.

It will be interesting to see if it’s possible to find a data set in 10gR2 where the optimizer decides to use

a hash group by followed by a sort order by—or whether a combined group by/order by will

always be turned into a single sort group by when the grouping and ordering columns are the same.

Another change appeared in the upgrade from 8i to 9i in the underlying optimizer calculations

for the group by and distinct operations. Here’s a query from the script agg_sort_2.sql in

the online code suite, and a section of the 9.2.0.6 version of the 10053 trace file for that query

(the 10053 trace file for a simple select distinct is very similar):

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 391

select

 col1, col2, count(*)

from

 t1

group by

 col1, col2

;

SINGLE TABLE ACCESS PATH

 TABLE: T1 ORIG CDN: 5000 ROUNDED CDN: 5000 CMPTD CDN: 5000

 Access path: tsc Resc: 3 Resp: 3

 BEST_CST: 3.00 PATH: 2 Degree: 1

Grouping column cardinality [COL1] 25

Grouping column cardinality [COL2] 71

GENERAL PLANS

Join order[1]: T1[T1]#0

GROUP BY sort

GROUP BY cardinality: 1256, TABLE cardinality: 5000

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760 Degree: 1

 Blocks to Sort: 10 Row size: 15 Rows: 5000

 Initial runs: 1 Merge passes: 1 IO Cost / pass: 19

 Total IO sort cost: 11

 Total CPU sort cost: 0

 Total Temp space used: 0

Best so far: TABLE#: 0 CST: 14 CDN: 5000 BYTES: 20000

 Total Temp space used: 0

The first thing to note is the GROUP BY cardinality information. The optimizer has picked

up the num_distinct values for col1 and col2 separately in the single-table access details, and

used them to produce a grouping cardinality in the general plans section. But how do you get

1,256 from 25 and 71? Answer—multiply them together and divide by the square root of 2

(1,256 = 24 * 71 / 1.4142). And in general, the optimizer estimates the number of distinct combi-

nations of N columns by multiplying the individual num_distinct values, and then dividing by

the square root of 2 (N – 1) times.

As a sanity check, the optimizer compares this with the number of rows in the table, and

reports the lower of the two values as the cardinality of the result set.

In 9i (and with the default value of _new_sort_cost_estimate unchanged), this has a

knock-on effect on the cost. Earlier on in the chapter, I pointed out that you will often see that

the Total IO sort cost is (Blocks to Sort + IO Cost per pass) / 2: in this example this would

be (10 + 19) / 2, which would be reported as 15. But the Total IO sort cost is reported as 11.

Something has changed. (In 8i, and allowing for the small changes due to rounding errors, etc.,

you would see the equivalent of 15 as the total I/O sort cost.)

The difference is interesting—from 9i onwards, the cost has been adjusted to allow for the

fact that the number of rows returned by the query is less than the total number of rows in the

392 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

table. It seems that in general, the IO cost per pass is total volume of input data + total volume

of output data. The value 19 is

 Input in blocks + output in blocks =

 Input Rows * Row size / blocksize + output Rows * Row size / blocksize =

 5,000 * 15 / 8192 + 5,000 * 15 / 8192 =

 18.3105 -- which rounds up to 19.

But in our grouping case, the optimizer has decided that the grouping cardinality is 1,256,

so the result changes:

 5,000 * 15 / 8192 + 1,256 * 15 / 8192 =

 11.455 - -- which rounds up to 12

Put that 12 into the normal formula (for a one merge pass sort):

 (blocks to sort + IO Cost per pass) / 2 =

 (10 + 12) / 2 =

 11

So in this case, the 10053 trace is showing us one figure for the IO Cost per pass (19) and

using another (12) to calculate the Total IO sort cost. It seems the trace file has not caught up

with the new feature.

There is a trap to watch out for here if you are still waiting to upgrade. If you have complex

queries that use aggregate functions to crunch large numbers of rows down to small result sets,

then this particular cost change may make a significant difference to the cost of some parts of

those queries—which may change the overall execution plan. This simple example showed a

change on a single table aggregation from 18 down to 14 (because the grouping cost dropped

from 15 down to 11) on the upgrade. This was on a query that crunched 5,000 rows down to 1,256.

The difference on a query that reduced a 100,000-row input to a 100-row output could be much

more dramatic.

Indexes

There is little to say about indexes—if you have to build an index by reading a table, most of

the work comes from sorting the data, but Oracle only costs for acquiring the data (i.e., the

tablescan, index fast full scan, or index full scan that will be used to get the necessary columns

and rowids).

If you want to work out the memory requirements for building a B-tree index, remember

that it is basically a simple sort. But one little detail you have to remember is that you are

sorting with one more column than you expect—the rowid, which is 6 bytes for a normal table,

but 8 bytes for a cluster index, and 10 bytes for a global index on a partitioned table (but only 6

for a local index on a partitioned table).

As you might guess, the memory requirements for building a bitmap index are highly

variable—just as the size of a bitmap index is highly variable. At present I don’t know how you

can work out a general estimate of the memory requirements for building a bitmap index.

There is one other special feature of indexes to consider if you are still using the manual

workarea_size_policy or running 8i—for versions 8i and 9i, all the memory comes from the

PGA (and not the UGA), whether or not you set a sort_area_retained_size. In 10g, memory is

allocated from the UGA—which is little surprising and sounds like a threat, but is irrelevant if

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 393

you are running with the automatic workarea_size_policy because the memory will be freed

properly as soon as the index build is finished.

Set Operations

Oracle offers three set operations—union, intersect, and minus, as shown in Table 13-6. You

might also want to include union all in your list of set operations, but technically it’s not a set

operation, as sets do not allow duplicates, and the result of a union all may include duplicates

(it’s also a very boring operation—Oracle just handles a couple of queries separately and runs

them one after the other).

The need to eliminate “duplicates” will probably make you think of sorting and the distinct

operator—so let’s take a look at what Oracle does with these set operations. In the script

set_ops.sql in the online code suite, I have created two very simple tables:

create table t1 as

select

 rownum id,

 ao.*

from

 all_objects ao

where

 rownum <= 2500

;

create table t2 as

select

 rownum id,

 ao.*

from

 all_objects ao

where

 rownum <= 2000

;

Table 13-6. The Set Operators in SQL

Operation The Result Set Contains

union One example of every possible row in the inputs

intersect One example of each row that appear in both inputs

minus One example of each row from the first input that does not appear in the
second input

394 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

With this definition, table t2 happens to be a proper subset of table t1, containing exactly

2,000 of the rows that also exist in t1. To demonstrate the effects of the three set operations,

I need only run three queries (plus one spare to demonstrate the nonsymmetrical nature of the

minus operator), with the results shown in Table 13-7.

The result sets are very easy to describe, because we know that the rows in the two sets we

are operating on are already unique, and that one is a subset of the other. Things become a

little more interesting when we start using base queries where there may be duplicates. Let’s

examine an example where we select only the owner and object_type from the two tables.

If we know that sets are supposed to contain no duplicates, we might decide that we are

supposed to enforce this uniqueness requirement before we do a set operation, so we might

write

select distinct owner, object_type from t1

intersect

select distinct owner, object_type from t2

;

On the other hand, if we understand how set operators are supposed to work—returning a

proper set by eliminating duplicates—we might decide that it is safe do to the following and let

Oracle sort out the problem of duplicates by itself:

select owner, object_type from t1

intersect

select owner, object_type from t2

;

Here are the two execution plans:

Table 13-7. Example Results from the Set Operators

Operation The Result Set Looks Like

select * from t1
union
select * from t2

The 2,500 rows from t1

select * from t1
intersect
select * from t2

The 2,000 rows in t2

select * from t1
minus
select * from t2

The 500 rows in t1 that are not in t2

select * from t2
minus
select * from t1

The empty set—the zero rows that are in t2 but not in t1

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 395

Execution Plan (9.2.0.6 - using distinct - no system stats)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=30 Card=15 Bytes=375)

 1 0 INTERSECTION

 2 1 SORT (UNIQUE) (Cost=15 Card=15 Bytes=180)

 3 2 TABLE ACCESS (FULL) OF 'T1' (Cost=6 Card=2500 Bytes=30000)

 4 1 SORT (UNIQUE) (Cost=15 Card=15 Bytes=195)

 5 4 TABLE ACCESS (FULL) OF 'T2' (Cost=6 Card=2000 Bytes=26000)

Execution Plan (9.2.0.6 - NO distinct - no system stats)

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=37 Card=2000 Bytes=56000)

 1 0 INTERSECTION

 2 1 SORT (UNIQUE) (Cost=19 Card=2500 Bytes=30000)

 3 2 TABLE ACCESS (FULL) OF 'T1' (Cost=6 Card=2500 Bytes=30000)

 4 1 SORT (UNIQUE) (Cost=18 Card=2000 Bytes=26000)

 5 4 TABLE ACCESS (FULL) OF 'T2' (Cost=6 Card=2000 Bytes=26000)

Whether we included the distinct operator or not, the optimizer has specified a sort

(unique) (lines 2 and 4) before taking the intersection. Moreover, if you run the queries with

event 10032 set to check the number of rows sorted and the number of comparisons made, you

will find that the run-time engine has done exactly the same amount of work in both cases.

It is “common knowledge” that you do not need to include the distinct operator as I have

done in the first example. In fact, some people will say it is an error to include the distinct

because it will introduce redundant sorting (which is not the case, as this example shows). So,

in general, queries using set operators tend to be written without the distinct.

Look closely at the costs and cardinalities, though. They are completely different. When

we introduce the distinct operator, the optimizer estimates the number of rows that will be

produced by each of the two halves of the query using the normal Group by Cardinality calcula-

tions, which results in lower costs and lower final cardinality. (The difference in costs disappears in

this example if you enable CPU costing—but that’s just the normal oddity of how costing for

in-memory sorts can change as you enable CPU costing.)

SET OPERATIONS AND DISTINCT

Contrary to the received wisdom on set operations, it seems that the practice of omitting the distinct oper-

ator is actually a bad idea—the optimizer does a better job of estimating the cardinality of the base result set

if you include the distinct. It shouldn’t matter, but at present it does.

When it comes to the cardinality of the result from the set operator itself, we are back on

familiar territory. Running the tests under 10g, I got the following sets of figures shown in

Table 13-8. As you can see, once the optimizer has worked out the cardinalities of the base

queries, it uses a worst-case scenario to work out the results of the set operation.

396 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

You have to be a little careful with the assumptions you make about how the SQL will be

operated. It is possible for things to change, and it may well have been true that in 8.0 or 7.3 the

presence of the apparently redundant distinct would have resulted in an extra pair of sorts

taking place. Things do change, and bugs can appear.

If you look in the 10053 trace, by the way, you won’t find any information about the set

operation itself—there will be a section for each of the two separate queries, followed by a final

cost that represents the set operation. But there is no explanation or justification for the final

figures. So you can only assume, as I do, that the optimizer just adds the cost of the separate

queries to get the final cost of the set operation.

Consider, as a final warning then, the following CTAS (which also appears in script

set_ops.sql in the online code suite):

create table t_intersect as

select distinct *

from (

 select owner, object_type from t1

 intersect

 select owner, object_type from t2

)

;

Clearly, the distinct in the outer select statement is redundant—but we have already

seen that Oracle is very good at avoiding sorts that are not really needed (not just in set opera-

tions, but also in our earlier example that featured a group by followed by an order by). So

what’s the execution plan for the CTAS? Here’s the output from dbms_xplan in 9.2.0.6 with CPU

costing enabled:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | CREATE TABLE STATEMENT | | 2000 | 56000 | 16 (25)|

| 1 | LOAD AS SELECT | | | | |

| 2 | VIEW | | 2000 | 56000 | |

| 3 | INTERSECTION | | | | |

| 4 | SORT UNIQUE | | 2500 | 30000 | 8 (25)|

| 5 | TABLE ACCESS FULL | T1 | 2500 | 30000 | 7 (15)|

| 6 | SORT UNIQUE | | 2000 | 26000 | 8 (25)|

| 7 | TABLE ACCESS FULL | T2 | 2000 | 26000 | 7 (15)|

Table 13-8. Cardinality Methods for Sets Operators

Data Set Group Cardinality Reason

t1 20 owner (4) * object_type (7) / 1.4142

t2 15 owner (3) * object_type (7) / 1.4142

union 35 t1 value + t2 value

intersect 15 least (t1 value, t2 value)

minus 20 First (i.e., t1) value

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 397

The optimizer has very cleverly noticed that the distinct was redundant: according to the

execution plan, the result set from the in-line view in line 2 has not been sorted.

And here’s the 10g version of the plan—again with CPU costing enabled:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | CREATE TABLE STATEMENT | | 2000 | 56000 | 20 (15)| 00:00:01 |

| 1 | LOAD AS SELECT | | | | | |

| 2 | SORT UNIQUE | | 2000 | 56000 | 18 (17)| 00:00:01 |

| 3 | VIEW | | 2000 | 56000 | 17 (12)| 00:00:01 |

| 4 | INTERSECTION | | | | | |

| 5 | SORT UNIQUE | | 2500 | 32500 | 7 (15)| 00:00:01 |

| 6 | TABLE ACCESS FULL| T1 | 2500 | 32500 | 6 (0)| 00:00:01 |

| 7 | SORT UNIQUE | | 2000 | 26000 | 7 (15)| 00:00:01 |

| 8 | TABLE ACCESS FULL| T2 | 2000 | 26000 | 6 (0)| 00:00:01 |

Notice the sort unique at line 2? It looks like 10g has reintroduced the redundant sort that

9i was smart enough to eliminate.

Fortunately, we can always check up on the sorting that actually happens by enabling

event 10032—and guess what—the 9i execution plan is lying. The 10032 trace files from both

9i and 10g show the same characteristic pattern. And I’ve printed an extract of the 10g trace here:

Input records 2000 -- T1

Output records 9

Input records 2500 -- T2

Output records 10

Input records 9 -- The intersection view

Output records 9

Input records 9

Output records 9

Input records 2500

Output records 10

Input records 2000

Output records 9

You can see that Oracle has sorted the two tables—2,500 and 2,000 rows, respectively, to

produce 10 and 9 rows of output, respectively. The third sort takes place after the intersection

has produced its 9 rows. If you remove the redundant distinct operation from the query, this

third sort operation disappears. Both versions do the redundant sort—but only 10g admits to it

in the execution plan.

398 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

■Note I pointed out much earlier on in this chapter that the sort statistics get printed twice—the way the

second printouts appear in reverse order in this example gives you an interesting insight into the stack-driven

nature of the run-time engine.

One of the most important things you can learn from this example is that even though the

optimizer will sometimes lie to you, when it comes to sorting, the 10032 trace can tell you what

has really happened.

Final Warning
I’ve already made this point several times in this book, but here it is just one last time. What the

engine does at run time isn’t necessarily what the optimizer thought about when costing.

Here’s a lovely example of an amazing run-time trick that the optimizer (currently) knows

nothing about. The script is short_sort.sql in the online code suite:

create table t1

as

with generator as (

 select --+ materialize

 rownum id,

 substr(dbms_random.string('U',6),1,6) sortcode

 from all_objects

 where rownum <= 5000

)

select

 /*+ ordered use_nl(v2) */

 substr(v2.sortcode,1,4) || substr(v1.sortcode,1,2) sortcode

from

 generator v1,

 generator v2

where

 rownum <= 1 * 1048576

;

-- Collect statistics using dbms_stats here

select sortcode

from t1

order by

 sortcode

;

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 399

select * from (

 select * from t1 order by sortcode

)

where

 rownum <= 10

;

The cost for both these queries is the same—most of it coming from the line where the sort

operation occurs; for example, this is the plan for the second query in my usual 9i environment:

Execution Plan (9.2.0.6 autotrace)

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2757 Card=10 Bytes=50)

 1 0 COUNT (STOPKEY)

 2 1 VIEW (Cost=2757 Card=1048576 Bytes=5242880)

 3 2 SORT (ORDER BY STOPKEY) (Cost=2757 Card=1048576 Bytes=7340032)

 4 3 TABLE ACCESS (FULL) OF 'T1' (Cost=266 Card=1048576 Bytes=7340032)

The session statistics showed a million rows sorted for each query, and when I ran a 10032

trace at the same time, it confirmed a million rows sorted. Yet, the first query needed about

5 seconds before it was ready to return any data, while the second query returned all its data in

less than half a second. Why?

Checking the 10032 trace file, you will see that the first query did 20 million comparisons

to sort its data, and the second did 1 million comparisons. When running the query with the

rownum limitation, the run-time engine simply scanned the table, keeping a cache of the top

10 values. It didn’t really sort 1,000,000 rows, it merely checked each row to see if it was larger

than the smallest item in the current cache and should replace it. At the end of the scan, it only

had 10 rows to sort. (And in 10g, the 10032 trace also showed that the full sort had taken 28MB

and still spilled to disk, while the second sort had needed just 8,192 bytes.)

The second query is much quicker than the first—but the optimizer doesn’t yet have a

costing model that matches the run-time operation.

Summary
The mechanisms for using sort_area_size and sort_area_retained_size for manual

workarea_size_policy still apply to Shared Servers (MTS), so you do need to know a little about

how they work.

The code underpinning the use of automatic workarea_size_policy and the pga_

aggregate_target uses the same sorting mechanisms, but makes a much better tactical decision

on the amount of memory allowed. Since the work done by the CPU in sorting increases with

the size of the binary tree, Oracle adopts a strategy of attempting to sort completely in memory

(to minimize disk I/O), but backing off to the minimum memory (plus a safety allowance) that

would allow for a onepass sort when it discovers that it cannot achieve an optimal sort. This mini-

mizes subsequent CPU consumption without changing the total I/O resource requirement.

Although the use of CPU costing and the automatic workarea_size_policy is the correct

strategic choice, there is still a large gap between the optimizer’s model for sorting and the

actual run-time activity, which may make it difficult for people to feel confident about making

the change.

400 C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S

The sort/merge join allows for joins based on range-based predicates, which makes them

more flexible than hash joins. The costs for a sort/merge join seem to be dictated almost entirely by

the cost of the two steps for acquiring the sorted data—the merge itself typically seems to be

free, no matter how complex it is. The only exception to this is the Cartesian merge join.

The mechanism for optimizing range-based joins, however, requires the second data set

to be instantiated so that a merge can be restarted for each row of the first input. There seems

to be a defect in the mechanism that can make this type of merge join very resource-intensive

at run time, even though the cost does not reflect the extra work.

Distinct, group by, and order by are all underpinned by sorting (until 10gR2), but the only

cost catered to by the optimizer is the sort cost. There does seem to be a component in the cost

calculation that allows for the size of the output on grouping and distinct from 9i onwards.

Sorting can be labor-intensive, and sometimes you may see Oracle doing more work than

you think is reasonable for a given execution plan. There are cases where the optimizer and the

run-time engine do not agree on how to operate a query—in the case of sorting, the 10032 trace

is very good at telling you what has really happened.

Test Cases
The files in the download for this chapter are shown in Table 13-9.

Table 13-9. Chapter 13 Test Cases

Script Comments

sort_demo_01.sql Sets up first demonstration of how sorting works

snap_myst.sql Reports changes in current session’s statistics

snap_ts.sql Reports changes in I/O statistics at the tablespace level

c_mystats.sql Create view used by script snap_myst.sql—has to be run as SYS

sort_demo_01a.sql Runs further tests against the data set from sort_demo_01.sql

sort_demo_01b.sql Runs tests using CPU costing against the data set from
sort_demo_01.sql

pat_dump.sql Sets pga_aggregate_target according to input parameter and
run query

sas_dump.sql Sets sort_area_size according to input parameter and run query

pat_nocpu_harness.sql Generate a script to pga_aggregate_target and call pat_dump.sql
repeatedly

pat_cpu_harness.sql As pat_nocpu_harness.sql, but with some system statistics set

sas_nocpu_harness.sql Generates a script to set sort_area_size and call sas_dump.sql
repeatedly

sas_cpu_harness.sql As sas_nocpu_harness.sql, but with some system statistics set

no_sort.sql A “no-sort” merge can sort the second set before getting the whole
first set

cartesian.sql Example of a Cartesian merge join

C H A P T E R 1 3 ■ S O R T I N G A N D M E R G E J O I N S 401

agg_sort.sql Various reasons for sorting

gby_onekey.sql Demonstration of 9i on sorting on multiple columns

merge_samples.sql Examples of merge joins

set_ops.sql Examples of union, intersect, and minus

short_sort.sql Shows how the optimizer fails to cost a new run-time trick

setenv.sql Sets a standardized environment for SQL*Plus

Table 13-9. Chapter 13 Test Cases

Script Comments

403

■ ■ ■

C H A P T E R 1 4

The 10053 Trace File

It would be impossible to write a good book on the cost based optimizer without mentioning

the optimizer debug trace event: 10053. It is well known that the 10053 trace file can tell you a

lot about what the optimizer is doing to calculate the cardinalities and costs involved in evalu-

ating an execution plan. The information is never complete, and there are all sorts of oddities

that might exist in such a trace file. But, for your entertainment, this chapter walks through the

10053 trace from a simple four-table join run under 10gR1, describing some of the features

that it exposes.

To enable the 10053 trace, you need to issue one of these statements:

alter session set events '10053 trace name context forever';

alter session set events '10053 trace name context forever, level 1';

alter session set events '10053 trace name context forever, level 2';

The first two do exactly the same thing—the last option produces a slightly shorter trace

file because it doesn’t include the optimizer parameter listing that is normally at the start of the

trace file.

To stop tracing, issue

alter session set events '10053 trace name context off';

You will find that the 10053 trace does not work on SQL embedded in PL/SQL unless you

are running 10g.

The visual impact of this chapter had to be totally different from the rest of the book. The

original trace file is reprinted in the “code” format, and there is a lot of it. To allow the eye a

break, I have included subheadings at each new join order. Note that I put the comments

before the text that I am commenting on, although there are a couple of notes that have to refer

backwards as well as forwards.

■Note Inevitably, 10gR2 does things differently. The order of the sections is different, there are numerous

extra hints clues and explanations (including a list of descriptions for all the little abbreviations like CDN), the

system statistics are reported, and the final execution plan with predicates and outline is included.

404 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

The Query
In earlier versions of Oracle, the query was printed near the top of the 10053 trace file. This

moved to the bottom in the later versions of 9.2 and 10.1, so I have listed here the query I used.

The script to create the data is big_10053.sql in the online code suite.

You will notice that the table names give an obvious clue about the intent of the SQL, and

that I have put the tables in the order that I think Oracle probably ought to visit them.

I have also followed a convention in the where clause that each predicate should read

column_i_want = value_i_know

This is obviously the case with lines like the following:

ggp.small_num_ggp between 100 and 150

It is less obvious, despite my intention, that this should be true on lines like this one:

gp.id_ggp = ggp.id

When I write a line like this, it is because I am assuming that the query will follow an order

of operation that means it will already have visited the greatgrandparent(ggp) table before

getting to this line, so that the expression ggp.id is now a constant.

By writing SQL that follows this convention, I hope to give future readers of my code some

clues about my understanding of the purpose of the SQL, the path I expect Oracle to take, and

the indexes that might exist to support this query.

You will note that, for more complex queries, I also tend to put a couple of empty comment

lines on either side of each group of predicates that “belong with” a specific table.

select

 count(ggp.small_vc_ggp),

 count(gp.small_vc_gp),

 count(p.small_vc_p),

 count(c.small_vc_c)

from

 greatgrandparent ggp,

 grandparent gp,

 parent p,

 child c

where

 ggp.small_num_ggp between 100 and 150

/* */

and gp.id_ggp = ggp.id

and gp.small_num_gp between 110 and 130

/* */

and p.id_gp = gp.id

and p.id_ggp = gp.id_ggp

and p.small_num_p between 110 and 130

/* */

and c.id_p = p.id

and c.id_gp = p.id_gp

and c.id_ggp = p.id_ggp

and c.small_num_c between 200 and 215

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 405

The Execution Plan
The one thing that the trace file does not report is an image of the final execution plan; you

have to infer what it would look like by analyzing the contents of the identified join order. To

make life a little easier, I have also run the query through dbms_xplan so that you can see it here

before you begin reading the trace file. You can get a similar plan (without the predicate infor-

mation) in the trace file by setting event 10132 at the same time as you set event 10053.

Slightly counterintuitively, Oracle 10.1.0.4 picked a path that didn’t quite follow the “obvious”

order implied by the table names. And at run time, the path that Oracle took did use marginally

less resources on its chosen plan than it did on the plan I was expecting.

■Note In the following output, I’ve modified the Name column to show GP for table grandparent and GGP

for table greatgrandparent. This was to allow the result to fit the page without ugly line wraps in the

middle of the table. I’ve deleted the quotation marks that usually appear in the Predicate Information

section for the same reason.

--

| Id | Operation | Name | Rows| Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 96 | 361 (1)| 00:00:04 |

| 1 | SORT AGGREGATE | | 1 | 96 | | |

| 2 | NESTED LOOPS | | 1 | 96 | 361 (1)| 00:00:04 |

| 3 | NESTED LOOPS | | 1 | 77 | 360 (1)| 00:00:04 |

| 4 | NESTED LOOPS | | 6 | 300 | 348 (1)| 00:00:04 |

|* 5 | TABLE ACCESS FULL | GP | 110 | 2530 | 128 (1)| 00:00:02 |

|* 6 | TABLE ACCESS BY INDEX ROWID| PARENT | 1 | 27 | 2 (0)| 00:00:01 |

|* 7 | INDEX RANGE SCAN | P_PK | 1 | | 1 (0)| 00:00:01 |

|* 8 | TABLE ACCESS BY INDEX ROWID | CHILD | 1 | 27 | 2 (0)| 00:00:01 |

|* 9 | INDEX RANGE SCAN | C_PK | 1 | | 1 (0)| 00:00:01 |

|* 10 | TABLE ACCESS BY INDEX ROWID | GGP | 1 | 19 | 1 (0)| 00:00:01 |

|* 11 | INDEX UNIQUE SCAN | GGP_PK | 1 | | 0 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 5 - filter(GP.SMALL_NUM_GP<=130 AND GP.SMALL_NUM_GP>=110)

 6 - filter(P.SMALL_NUM_P<=130 AND P.SMALL_NUM_P>=110)

 7 - access(P.ID_GGP=GP.ID_GGP AND P.ID_GP=GP.ID)

 8 - filter(C.SMALL_NUM_C<=215 AND C.SMALL_NUM_C>=200)

 9 - access(C.ID_GGP=P.ID_GGP AND C.ID_GP=P.ID_GP AND C.ID_P= P.ID)

 10 - filter(GGP.SMALL_NUM_GGP>=100 AND GGP.SMALL_NUM_GGP<=150)

 11 - access(GP.ID_GGP=GGP.ID)

406 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

The Environment
One thing you can’t see from the trace file (until 10gR2) is the state of the system statistics (used

for CPU costing). Before running the query, I had executed the following anonymous PL/SQL

block:

begin

 dbms_stats.set_system_stats('MBRC',8);

 dbms_stats.set_system_stats('MREADTIM',20);

 dbms_stats.set_system_stats('SREADTIM',10);

 dbms_stats.set_system_stats('CPUSPEED',500);

end;

/

Remember that the cost formula (rearranged) from the Oracle Performance Tuning Guide

and Reference that I quoted in Chapter 1 tells us that

Cost = (

 #SRds +

 #MRds * mreadtim / sreadtim +

 #CPUCycles / (cpuspeed * sreadtim)

)

This means that, depending on exactly how each version makes use of rounding and trun-

cating at different parts of the calculation, the cost of a tablescan will be approximately

1 + ceil((high water mark / MBRC) * (mreadtim / sreadtim)) + a CPU cost =

1 + ceil((high water mark / 8) * 20/10) + (a bit) =

1 + ceil((high water mark / 4)) + (a bit)

Given the number of blocks in the four tables (which you will see later), we get the costs

shown in Table 14-1 for the I/O components of the tablescans.

The figures in brackets are the actual values acquired from a separate test—I frequently

find that my predications are out by the odd plus or minus one (which seems to float depending

on the version of Oracle). In this case, I think I will ascribe the error to a computational error

dealing with a 0.5 that appears from high water mark / 4.

Table 14-1. The Table Sizes and Tablescan I/O Costs

Table Name Blocks I/O Cost

greatgrandparent 250 64

grandparent 500 126 (127)

parent 2,500 626 (627)

child 10,000 2,501

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 407

Finally, to convert CPU resource figures into costs, we have to apply the last line of the

generic formula:

Cost = (#CPUCycles / cpuspeed) / sreadtim) =

 #CPUCycles / (cpuspeed * sreadtim)

Since the cpuspeed figure is stored in MHz—which means millions of cycles (or Oracle

operations) per second, and the sreadtim is stored in milliseconds, we have to apply a fudge

factor of 1,000 to ensure that we are using the same time units throughout. So with a CPU speed

of 500, and a single block read time of 10,000 microseconds, we need to divide any figures for

CPU cycles by 5,000,000 before adding them to the cost.

The Trace File
The first section of the 10053 trace file output lists the actual values used by the optimizer as a

result of bind variable peeking. (The sample section that follows is a fake to demonstrate the

format, as my query didn’t use any bind variables.) It is unfortunate that the names of the bind

variables are not given here, only their position. You just have to count your way through the

statement to match variables with their values.

Peeked values of the binds in SQL statement

bind 0:dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=03 oacfl2=0000 size=48 offset=0

 bfp=065ddc30 bln=22 avl=02 flg=05

 value=100

bind 1:dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=03 oacfl2=0000 size=0 offset=24

 bfp=065ddc48 bln=22 avl=03 flg=01

 value=150

bind 3:dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=03 oacfl2=0000 size=0 offset=48

 No bind buffers allocated

Parameter Settings

The second section of the output lists the current settings of the parameters relevant to the

optimizer. If you compare the full list of options available in x$ksppi, you may find some items

that look as if they should be in this list. Conversely, if you look at v$sql_optimizer_env (see

Appendix B), you will find that there are a lot more in this list than appear in the view.

The 10g output conveniently separates the parameter list into two sets—those modified by

the session, and those that use the default value.

If you think you know a lot about the optimizer and how it works, take a look at some of the

“feature-oriented” parameters, typically the ones with the true/false values. I find it quite

worrying to see how many clues I get that there are details of the optimizer that I’ve probably

never ever seen in action.

408 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

PARAMETERS USED BY THE OPTIMIZER

 PARAMETERS WITH ALTERED VALUES

 PARAMETERS WITH DEFAULT VALUES

 optimizer_mode_hinted = false

 optimizer_features_hinted = 0.0.0

 parallel_execution_enabled = true

 parallel_query_forced_dop = 0

 parallel_dml_forced_dop = 0

 parallel_ddl_forced_degree = 0

 parallel_ddl_forced_instances = 0

 _query_rewrite_fudge = 90

 optimizer_features_enable = 10.1.0.4

 _optimizer_search_limit = 5

 cpu_count = 1

 active_instance_count = 1

 parallel_threads_per_cpu = 2

 hash_area_size = 131072

 bitmap_merge_area_size = 1048576

 sort_area_size = 65536

 sort_area_retained_size = 0

 _sort_elimination_cost_ratio = 0

 _optimizer_block_size = 8192

 _sort_multiblock_read_count = 2

 _hash_multiblock_io_count = 0

 db_file_multiblock_read_count = 8

 _optimizer_max_permutations = 2000

 pga_aggregate_target = 204800 KB

 _pga_max_size = 204800 KB

 _sort_space_for_write_buffers = 1

 _query_rewrite_maxdisjunct = 257

 _smm_auto_min_io_size = 56 KB

 _smm_auto_max_io_size = 248 KB

 _smm_min_size = 204 KB

 _smm_max_size = 10240 KB

 _smm_px_max_size = 61440 KB

 _cpu_to_io = 0

 _optimizer_undo_cost_change = 10.1.0.4

 parallel_query_mode = enabled

 parallel_dml_mode = disabled

 parallel_ddl_mode = enabled

 optimizer_mode = all_rows

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 409

 sqlstat_enabled = false

 _optimizer_percent_parallel = 101

 _always_anti_join = choose

 _always_semi_join = choose

 _optimizer_mode_force = true

 _partition_view_enabled = true

 _always_star_transformation = false

 _query_rewrite_or_error = false

 _hash_join_enabled = true

 cursor_sharing = exact

 _b_tree_bitmap_plans = true

 star_transformation_enabled = false

 _optimizer_cost_model = choose

 _new_sort_cost_estimate = true

 _complex_view_merging = true

 _unnest_subquery = true

 _eliminate_common_subexpr = true

 _pred_move_around = true

 _convert_set_to_join = false

 _push_join_predicate = true

 _push_join_union_view = true

 _fast_full_scan_enabled = true

 _optim_enhance_nnull_detection = true

 _parallel_broadcast_enabled = true

 _px_broadcast_fudge_factor = 100

 _ordered_nested_loop = true

 _no_or_expansion = false

 optimizer_index_cost_adj = 100

 optimizer_index_caching = 0

 _system_index_caching = 0

 _disable_datalayer_sampling = false

 query_rewrite_enabled = true

 query_rewrite_integrity = enforced

 _query_cost_rewrite = true

 _query_rewrite_2 = true

 _query_rewrite_1 = true

 _query_rewrite_expression = true

 _query_rewrite_jgmigrate = true

 _query_rewrite_fpc = true

 _query_rewrite_drj = true

 _full_pwise_join_enabled = true

 _partial_pwise_join_enabled = true

 _left_nested_loops_random = true

 _improved_row_length_enabled = true

 _index_join_enabled = true

 _enable_type_dep_selectivity = true

 _improved_outerjoin_card = true

410 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 _optimizer_adjust_for_nulls = true

 _optimizer_degree = 0

 _use_column_stats_for_function = true

 _subquery_pruning_enabled = true

 _subquery_pruning_mv_enabled = false

 _or_expand_nvl_predicate = true

 _like_with_bind_as_equality = false

 _table_scan_cost_plus_one = true

 _cost_equality_semi_join = true

 _default_non_equality_sel_check = true

 _new_initial_join_orders = true

 _oneside_colstat_for_equijoins = true

 _optim_peek_user_binds = true

 _minimal_stats_aggregation = true

 _force_temptables_for_gsets = false

 workarea_size_policy = auto

 _smm_auto_cost_enabled = true

 _gs_anti_semi_join_allowed = true

 _optim_new_default_join_sel = true

 optimizer_dynamic_sampling = 2

 _pre_rewrite_push_pred = true

 _optimizer_new_join_card_computation = true

 _union_rewrite_for_gs = yes_gset_mvs

 _generalized_pruning_enabled = true

 _optim_adjust_for_part_skews = true

 _force_datefold_trunc = false

 statistics_level = typical

 _optimizer_system_stats_usage = true

 skip_unusable_indexes = true

 _remove_aggr_subquery = true

 _optimizer_push_down_distinct = 0

 _dml_monitoring_enabled = true

 _optimizer_undo_changes = false

 _predicate_elimination_enabled = true

 _nested_loop_fudge = 100

 _project_view_columns = true

 _local_communication_costing_enabled = true

 _local_communication_ratio = 50

 _query_rewrite_vop_cleanup = true

 _slave_mapping_enabled = true

 _optimizer_cost_based_transformation = linear

 _optimizer_mjc_enabled = true

 _right_outer_hash_enable = true

 _spr_push_pred_refspr = true

 _optimizer_cache_stats = false

 _optimizer_cbqt_factor = 50

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 411

 _optimizer_squ_bottomup = true

 _fic_area_size = 131072

 _optimizer_skip_scan_enabled = true

 _optimizer_cost_filter_pred = false

 _optimizer_sortmerge_join_enabled = true

 _optimizer_join_sel_sanity_check = true

 _mmv_query_rewrite_enabled = false

 _bt_mmv_query_rewrite_enabled = true

 _add_stale_mv_to_dependency_list = true

 _distinct_view_unnesting = false

 _optimizer_dim_subq_join_sel = true

 _optimizer_disable_strans_sanity_checks = 0

 _optimizer_compute_index_stats = true

 _push_join_union_view2 = true

 _optimizer_ignore_hints = false

 _optimizer_random_plan = 0

 _query_rewrite_setopgrw_enable = true

 _optimizer_correct_sq_selectivity = true

 _disable_function_based_index = false

 _optimizer_join_order_control = 3

 _optimizer_push_pred_cost_based = true

Column Usage Monitoring is ON: tracking level = 1

Query Blocks

Query blocks (which, loosely speaking, means visible subqueries or in-line views) acquired

names in 10g. You can explicitly name a block with the qb_name hint, and use it to refer to object

aliases in global hints. If you don’t supply a name, Oracle uses a generated name for each block.

If you have a complex query that includes (for example) a subquery or view that cannot be

merged, then you will find that the 10053 trace file may have a number of totally separate

sections—one section for each nonmergeable query block, and a section where the nonmerge-

able parts are joined.

The query block signature helps you to see how the query has been broken down into parts

by listing the tables, or more precisely the aliases, (fro(N)), that appear in that block. The aliases

seem to be reported in alphabetical order.

QUERY BLOCK SIGNATURE

qb name was generated

signature (optimizer): qb_name=SEL$1 nbfros=4 flg=0

 fro(0): flg=0 objn=58048 hint_alias="C"@"SEL$1"

 fro(1): flg=0 objn=58045 hint_alias="GGP"@"SEL$1"

 fro(2): flg=0 objn=58046 hint_alias="GP"@"SEL$1"

 fro(3): flg=0 objn=58047 hint_alias="P"@"SEL$1"

412 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

Stored Statistics

The next section of the output is a simple restatement of the basic statistics on the tables

involved, and the indexes that might be of use. These figures are simply echoing the figures

from user_tables, user_tab_col_statistics, and user_indexes (or the partition equivalents).

If you are using partitioning, you will see comments here about (using composite stats) or,

for a known single partition, a label identifying the partition by number, e.g., PARTITION [0].

These comments appear only at the table and index level, not at the column level.

The columns reported are only those that could be used for filtering and access at this

point—earlier versions of Oracle will report them in different locations in the trace.

There is a little oddity about histograms: I did not create any histograms for this query,

nevertheless Oracle reports 1 uncompressed buckets. This is just a way of saying that I have

nothing but the low/high (or as they now appear in the 10g trace Min:/Max:) values for this

column.

In the absence of histograms, you will note that the NDV (number of distinct values) for

each column = 1/Density.

It is an interesting little detail that the tables appear to be listed in the reverse order that

they appear in the from clause.

BASE STATISTICAL INFORMATION

Table stats Table: CHILD Alias: C

 TOTAL :: CDN: 40000 NBLKS: 10000 AVG_ROW_LEN: 1632

 COLUMN: ID_P(NUMBER) Col#: 3 Table: CHILD Alias: C

 Size: 4 NDV: 10000 Nulls: 0 Density: 1.0000e-004 Min: 1 Max: 10000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID_GP(NUMBER) Col#: 2 Table: CHILD Alias: C

 Size: 4 NDV: 2000 Nulls: 0 Density: 5.0000e-004 Min: 1 Max: 2000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID_GGP(NUMBER) Col#: 1 Table: CHILD Alias: C

 Size: 4 NDV: 1000 Nulls: 0 Density: 1.0000e-003 Min: 1 Max: 1000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

Index stats

 Index: C_PK COL#: 1 2 3 4

 TOTAL :: LVLS: 1 #LB: 108 #DK: 40000 LB/K: 1 DB/K: 1 CLUF: 40000

Table stats Table: PARENT Alias: P

 TOTAL :: CDN: 10000 NBLKS: 2500 AVG_ROW_LEN: 1627

 COLUMN: ID_GP(NUMBER) Col#: 2 Table: PARENT Alias: P

 Size: 4 NDV: 2000 Nulls: 0 Density: 5.0000e-004 Min: 1 Max: 2000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 413

 COLUMN: ID_GGP(NUMBER) Col#: 1 Table: PARENT Alias: P

 Size: 4 NDV: 1000 Nulls: 0 Density: 1.0000e-003 Min: 1 Max: 1000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID(NUMBER) Col#: 3 Table: PARENT Alias: P

 Size: 4 NDV: 10000 Nulls: 0 Density: 1.0000e-004 Min: 1 Max: 10000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID_GP(NUMBER) Col#: 2 Table: PARENT Alias: P

 Size: 4 NDV: 2000 Nulls: 0 Density: 5.0000e-004 Min: 1 Max: 2000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID_GGP(NUMBER) Col#: 1 Table: PARENT Alias: P

 Size: 4 NDV: 1000 Nulls: 0 Density: 1.0000e-003 Min: 1 Max: 1000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

Index stats

 Index: P_PK COL#: 1 2 3

 TOTAL :: LVLS: 1 #LB: 24 #DK: 10000 LB/K: 1 DB/K: 1 CLUF: 10000

Table stats Table: GRANDPARENT Alias: GP

 TOTAL :: CDN: 2000 NBLKS: 500 AVG_ROW_LEN: 1623

 COLUMN: ID_GGP(NUMBER) Col#: 1 Table: GRANDPARENT Alias: GP

 Size: 4 NDV: 1000 Nulls: 0 Density: 1.0000e-003 Min: 1 Max: 1000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID(NUMBER) Col#: 2 Table: GRANDPARENT Alias: GP

 Size: 4 NDV: 2000 Nulls: 0 Density: 5.0000e-004 Min: 1 Max: 2000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 COLUMN: ID_GGP(NUMBER) Col#: 1 Table: GRANDPARENT Alias: GP

 Size: 4 NDV: 1000 Nulls: 0 Density: 1.0000e-003 Min: 1 Max: 1000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

Index stats

 Index: GP_PK COL#: 1 2

 TOTAL :: LVLS: 1 #LB: 6 #DK: 2000 LB/K: 1 DB/K: 1 CLUF: 2000

Table stats Table: GREATGRANDPARENT Alias: GGP

 TOTAL :: CDN: 1000 NBLKS: 250 AVG_ROW_LEN: 1619

 COLUMN: ID(NUMBER) Col#: 1 Table: GREATGRANDPARENT Alias: GGP

 Size: 4 NDV: 1000 Nulls: 0 Density: 1.0000e-003 Min: 1 Max: 1000

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

Index stats

414 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 Index: GGP_PK COL#: 1

 TOTAL :: LVLS: 1 #LB: 2 #DK: 1000 LB/K: 1 DB/K: 1 CLUF: 250

_OPTIMIZER_PERCENT_PARALLEL = 0

Single Tables

The next section is about the “single table” access paths, where the optimizer works out for

each table individually the number of rows that will be acquired, and the cheapest cost of

getting them, based on the assumption that the only access paths into the table are those

governed by the constants (literal or bind) that are supplied in the original query.

At this point, the optimizer ignores any column conditions that are relevant to join conditions;

however, it is allowed to read constraints from the database and apply transitive closure to

create new conditions, for example:

 If you have the predicates

 col1 = 'x' and col2 = col1

 then Oracle can infer

 col2 = 'x'

or

 if you have a constraint

 colX = upper(colx)

 then Oracle could take the predicate

 upper(colX) = 'ABC'

 and infer the predicate

 colX = 'ABC'

This treatment of constraints seems to have undergone some changes in 10.1, and no

longer works when the constants are replaced by bind variables. This may be a bug, but it may

have been a deliberate change to avoid incorrect results with nulls

Following is a worked example for the greatgrandparent table:

 We have a predicate: small_num_ggp between 100 and 150

 Number of distinct values (NDV) = 200

 Number of nulls (NULLS) = 0

 Density (DENS) = 0.005 (1/200)

 Low value (Min) = 0

 High values (Max) = 199

 According to the selectivity formula for a 'between' range,

 Selectivity = (val2 - val1) / (high - low) + 2 / num_distinct =

 50 / 199 + 2/200 =

 0.261256

Multiply by 1,000 rows and round to get a computed cardinality of 261. The cost for the

tablescan was given in Table 14-1, but you will notice that the BEST_CST (best cost) for acquiring

the data is given here as 64.41, while the cost reported Table 14-1 was only 64. The difference is

the CPU component of the cost. It is unfortunate that the trace file does not show the break-

down of total cost into the IO cost and CPU cost as it does in other places.

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 415

SINGLE TABLE ACCESS PATH

 COLUMN: SMALL_NUM_(NUMBER) Col#: 2 Table: GREATGRANDPARENT Alias: GGP

 Size: 4 NDV: 200 Nulls: 0 Density: 5.0000e-003 Min: 0 Max: 199

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 TABLE: GREATGRANDPARENT Alias: GGP

 Original Card: 1000 Rounded: 261 Computed: 261.26 Non Adjusted: 261.26

 Access Path: table-scan Resc: 64 Resp: 64

 BEST_CST: 64.41 PATH: 2 Degree: 1

SINGLE TABLE ACCESS PATH

 COLUMN: SMALL_NUM_(NUMBER) Col#: 3 Table: GRANDPARENT Alias: GP

 Size: 4 NDV: 400 Nulls: 0 Density: 2.5000e-003 Min: 0 Max: 399

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 TABLE: GRANDPARENT Alias: GP

 Original Card: 2000 Rounded: 110 Computed: 110.25 Non Adjusted: 110.25

 Access Path: table-scan Resc: 128 Resp: 128

 BEST_CST: 127.82 PATH: 2 Degree: 1

SINGLE TABLE ACCESS PATH

 COLUMN: SMALL_NUM_(NUMBER) Col#: 4 Table: PARENT Alias: P

 Size: 4 NDV: 2000 Nulls: 0 Density: 5.0000e-004 Min: 0 Max: 1999

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 TABLE: PARENT Alias: P

 Original Card: 10000 Rounded: 110 Computed: 110.05 Non Adjusted: 110.05

 Access Path: table-scan Resc: 631 Resp: 631

 BEST_CST: 631.09 PATH: 2 Degree: 1

SINGLE TABLE ACCESS PATH

 COLUMN: SMALL_NUM_(NUMBER) Col#: 5 Table: CHILD Alias: C

 Size: 4 NDV: 10000 Nulls: 0 Density: 1.0000e-004 Min: 0 Max: 9999

 No Histogram: #BKT: 1

 (1 uncompressed buckets and 2 endpoint values)

 TABLE: CHILD Alias: C

 Original Card: 40000 Rounded: 68 Computed: 68.01 Non Adjusted: 68.01

 Access Path: table-scan Resc: 2517 Resp: 2517

 BEST_CST: 2517.49 PATH: 2 Degree: 1

416 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

Sanity Checks

This next section is new to 10g, relating to the multicolumn join sanity check feature. If there

are two (or more) join conditions between two tables, the optimizer used to treat each condi-

tion separately for the purposes of deciding which tables should supply the selectivity. In 10g,

the optimizer takes the selectivity from just one side of the join. It has two strategies for doing this.

If the join covers the whole of a concatenated index, then Oracle will consider the

distinct_keys column from user_indexes view as a possible join selectivity. If there is no suit-

able index, Oracle considers the product of the selectivities from one table or the other, but

does not pick and choose from each side.

There is a slight oddity in the reporting of the concatenated index card. In the example,

the child table is reported with a cardinality of 10,000—which is the distinct_keys from the

parent index, which is where the join is going. But the optimizer is simply telling us that there

has to be at most this number of distinct values in our selection from the child table because it

is joined to the parent table, and we actually know that there are only 10,000 values in the

parent table. Similarly, the parent table is reported with a cardinality of 2,000—which is the

distinct_keys from the grandparent table, which is where the join is going.

You will find entries for concatenated indexes in 9i trace files, but you won’t find the

entries for the multicolumn join key.

Table: CHILD Concatenated index card: 10000.000000

Table: PARENT Concatenated index card: 2000.000000

Table: CHILD Multi-column join key card: 40000.000000

Table: PARENT Multi-column join key card: 10000.000000

Table: PARENT Multi-column join key card: 10000.000000

Table: GRANDPARENT Multi-column join key card: 2000.000000

OPTIMIZER STATISTICS AND COMPUTATIONS

General Plans

Finally, we start to work on joins. In this case, there are 24 permutations that we might have to

deal with. The first six might be the ones that start with greatgrandparent:

 ggp-gp-p-c, ggp-gp-c-p, ggp-p-gp-c, ggp-p-c-gp, ggp-c-gp-p, ggp-c-p-gp.

After this, Oracle might do six starting with grandparent, then six starting with parent, then

six starting with child. Will it check all of them, and which one will be first?

The first question is easy—the answer is, Not necessarily. For a very short list of tables (up

to and including five), the optimizer may consider every join order, but even then it may dismiss

some as a waste of effort almost immediately.

The second question requires a little more thought. Consider the results from the single

table access path section, shown in Table 14-2.

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 417

Join order[1]

When we check, the first join order is: child → parent → grandparent → greatgrandparent.

This does give us two possible options for guessing. Either the first join order is in order of

computed cardinality, or it is in reverse order of cost. (A quick test shows it to be the order of

cardinality.)

In fact, there is a special “single-row table” rule. Tables that are known to produce exactly

one row (and this typically means a table with a single value predicate on a unique/primary

key, although it could be a simple aggregate view) are promoted to the front of the list, and stay

there. Inevitably these tables may end up being involved in Cartesian joins, but a Cartesian join

between two single-row tables is still just one row, so the effect on the cost is irrelevant and the

tables do not play a part in the main costing work thereafter.

There is an exception to the “single-row table” rule: if you use the leading() hint to specify

the first table(s) in the join order, the “single-row table” rule has to be discarded, and every

table except the leading table(s) will then participate in the full optimization process.

You will notice that each table has its alias (possibly system generated) and a number

following its name in the Join order[] line. You will find that these aliases and numbers are

used to refer to the table at various stages later on in the trace file.

GENERAL PLANS

Join order[1]: CHILD[C]#0 PARENT[P]#1 GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3

Now joining (1)

We only ever join one more table at a time. For each table, Oracle tries a nested loop, a sort/merge

(sometimes twice) and a hash join, in that order. The hints use_nl, use_merge, and use_hash

apply specifically at this Now joining point, and tell Oracle which join mechanism it must use.

In the case of the nested loop join, we see the cost as

 Outer table cost (2517) plus

 Outer table cardinality (68) * best inner table unit cost (1) = 2585

Of course, you will see that the Best NL cost: is quoted at the end of the section as 2,586.

In isolation (in a separate test), the cost of scanning and acquiring a few rows from the parent

table was 2,517.82, which explains the small error that our calculation produces. The best we

can ever do from a 10053 trace is always going to be a little inaccurate, because the informa-

tion supplied is (a) not intended for us and (b) not complete.

Table 14-2. Summary of “Single Table Access Path” Calculations

Table Name Cost Computed Cardinality

greatgrandparent 64.41 261.26

grandparent 127.82 110.25

parent 631.09 110.05

child 2,517.49 68.01

418 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

I suspect the P_PK index is evaluated twice because one piece of code uses the standard

formula for single-table access by index (unique), and another uses the special case of unique

index guaranteeing at most one row (eq-unique).

You will notice the ix_sel and ix_sel_with_filters (which would be labeled tb_sel in

earlier versions of Oracle) are zero for the eq_unique option. This conveniently reflects the fact

that the special cost calculation for unique access on unique indexes is blevel + 1 and need

not involve subtle calculation of leaf block and table block visits.

Since our query predicates don’t do anything odd with the indexes (such as missing out

columns or using ranges on leading columns), we will see ix_sel = ix_sel_with_filters all

the way through this example.

Now joining: PARENT[P]#1 *******

NL Join

 Outer table: cost: 2517 cdn: 68 rcz: 27 resp: 2517

 Inner table: PARENT Alias: P

 Access Path: table-scan Resc: 629

 Join: Resc: 45302 Resp: 45302

 Access Path: index (unique)

 Index: P_PK

 rsc_cpu: 15620 rsc_io: 1

 ix_sel: 1.0000e-004 ix_sel_with_filters: 1.0000e-004

 NL Join: resc: 2586 resp: 2586

 Access Path: index (eq-unique)

 Index: P_PK

 rsc_cpu: 15820 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 2586 resp: 2586

 Best NL cost: 2586 resp: 2586

The join cardinality is calculated at the end of the nested loop cost calculation. For this

reason (I assume) the nested loop calculation always appears in the trace file, even if you have

put a use_merge or use_hash hint into your query to block the use of a nested loop.

Note how a sanity check has kicked in. The traditional selectivity mechanism has produced a

value that is smaller than 1/(number of rows in table), so one of the other figures has been

used—in this case the selectivity of the fully utilized P_PK index.

Using concatenated index cardinality for table PARENT

Revised join selectivity: 1.0000e-004 = 7.9445e-007 * (1/10000) * (1/7.9445e-007)

Join Card: 0.75 = outer (68.01) * inner (110.05) * sel (1.0000e-004)

We now move on to the sort/merge join. In this example, we try one mechanism for the

SM Join. A little lower down is an example where we try two different options for the SM Join.

Historically, the cost of a sort/merge join has shown some bizarre statistics—in particular

the relationship between the figures that went into the I/O cost per pass and the Total I/O

sort cost seemed to be based on an unusual rationale.

The critical calculations are in the Row size (sum of relevant average column lengths), and

the Total Rows (computed cardinality) for each table. Oracle works out the CPU cost of sorting

these rows, and the possible volume of I/O that will need to take place if the memory require-

ment exceeds the limit. Since we are using pga_aggregate_target here, and have a very small

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 419

pair of sorts, the Area size: is the _smm_min_size (0.1% of the 200MB we have for the

pga_aggregate_target), and the Max Area size: is the _smm_max_size (5% of the target).

In this case, the data to be sorted from both tables is very small, so there is no I/O cost.

(You can also see that there is no estimated Total Temp space used:.)

The cost of the join is therefore

 Outer table data acquisition cost +

 Outer table sort cost (CPU only in this case) +

 Inner table data acquisition cost +

 Inner table sort cost (CPU only in this case)

To turn the reported Total CPU sort cost into standard units, we divide by 5,000,000 (the

500 MHz * 10,000 microsecond sreadtim) to get

Cost of join =

 2,517 + 5,018,650 / 5,000,000 +

 631 + 5,033,608 / 5,000,000 =

 3,148 + 2 and a bit.

You can see at the end of the following section that the actual cost quoted for the merge is

3,151, which compares well with the 3,150 plus a bit that I have just calculated. Since I can’t

guarantee the timing, or direction, of rounding used, I can’t be certain whether the difference

of one is due to rounding, or to a small cost that is directly attributable to the merge operation

itself.

SM Join

 Outer table:

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 68

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5018650

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 3151 Resp: 3151

Finally the hash join. For optimal hash joins, the cost of the join is basically the cost of

acquiring the two data sets, plus a little bit. In this case:

420 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 Outer table cost = 2517

 Inner table cost = 631

 Hash join cost = 3149 = 2517 + 631 + 1

The extra one is the Hash join one ptn (partition) cost.

HA Join

 Outer table:

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 3149 Resp: 3149

We have now tried all three (four) join mechanisms, with the following best costs in each case:

 NL 2586

 SM 3151

 HA 3149

So we report the cost of the cheapest option, and remember that as the cost of producing

the intermediate data set.

Join result: cost: 2586 cdn: 1 rcz: 54

Now joining (2)

The optimizer only ever joins two tables—so it’s time to join the next table in the current join

order to our intermediate data set. The Outer table isn’t really a table, of course.

Now joining: GRANDPARENT[GP]#2 *******

NL Join

 Outer table: cost: 2586 cdn: 1 rcz: 54 resp: 2586

 Inner table: GRANDPARENT Alias: GP

 Access Path: table-scan Resc: 128

 Join: Resc: 2714 Resp: 2714

 Access Path: index (unique)

 Index: GP_PK

 rsc_cpu: 15589 rsc_io: 1

 ix_sel: 5.0000e-004 ix_sel_with_filters: 5.0000e-004

 NL Join: resc: 2587 resp: 2587

 Access Path: index (eq-unique)

 Index: GP_PK

 rsc_cpu: 15789 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 2587 resp: 2587

 Best NL cost: 2587 resp: 2587

Using concatenated index cardinality for table GRANDPARENT

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 421

Revised join selectivity: 5.0000e-004 = 8.3417e-005 * (1/2000) * (1/8.3417e-005)

Join Card: 0.04 = outer (0.75) * inner (110.25) * sel (5.0000e-004)

SM Join

 Outer table:

 resc: 2586 cdn: 1 rcz: 54 deg: 1 resp: 2586

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 70 Total Rows: 1

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000000

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 2716 Resp: 2716

HA Join

 Outer table:

 resc: 2586 cdn: 1 rcz: 54 deg: 1 resp: 2586

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 2714 Resp: 2714

Join result: cost: 2587 cdn: 1 rcz: 77

Now joining (3)

We’ve added the third table to the list, so now we add the fourth table to the intermediate result.

Notice that the cost of the Outer table is now the cost of the join of the previous three tables.

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 2587 cdn: 1 rcz: 77 resp: 2587

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 64

 Join: Resc: 2651 Resp: 2651

422 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 2588 resp: 2588

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 2588 resp: 2588

 Best NL cost: 2588 resp: 2588

Join Card: 0.04 = outer (0.04) * inner (261.26) * sel (3.8168e-003)

SM Join

 Outer table:

 resc: 2587 cdn: 1 rcz: 77 deg: 1 resp: 2587

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 95 Total Rows: 1

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000000

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 2653 Resp: 2653

HA Join

 Outer table:

 resc: 2587 cdn: 1 rcz: 77 deg: 1 resp: 2587

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 2652 Resp: 2652

Join result: cost: 2588 cdn: 1 rcz: 96

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 423

Best so far

We’ve got to the end of the first join order. Every time we get to the end of a join order, the opti-

mizer checks the cost against the best cost so far, and if the latest cost is better, it gets reported

and remembered. The first cost is, of course, the best so far because there has been no previous

cost.

The instances of TABLE# correspond to the table numbers listed in the first join order.

The figures by CST, CDN, and BYTES are the figures that would appear in the plan table as the

columns cost, cardinality, and bytes. You can see in the Join result at the end of the previous

section that we have a fields called cdn (cardinality) and rcz (the record size)—the BYTES figure

that follows comes from the product of these two figures.

Best so far: TABLE#: 0 CST: 2517 CDN: 68 BYTES: 1836

Best so far: TABLE#: 1 CST: 2586 CDN: 1 BYTES: 54

Best so far: TABLE#: 2 CST: 2587 CDN: 1 BYTES: 77

Best so far: TABLE#: 3 CST: 2588 CDN: 1 BYTES: 96

Join order[2]

We move on to the second join order. For a small number of tables (typically five or less),

Oracle will do a simple cyclic permutation of the tables, starting from the end of the first join

order, working through all possible permutations. So the second join order simply swaps the

last two tables.

Join order[2]: CHILD[C]#0 PARENT[P]#1 GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2

Wait a moment—why does the next line in the trace file say we are joining greatgrandparent?

Surely it should be parent? No—because Oracle has remembered that Join order [1] started

with child → parent, and has carried the intermediate results of that join forward to this join order.

Remember, as the SQL statements get “larger,” the amount of memory used to optimize

them increases. This is partly because Oracle has to remember more and more intermediate

results as the number of tables increases.

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 2586 cdn: 1 rcz: 54 resp: 2586

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 64

 Join: Resc: 2650 Resp: 2650

 Best NL cost: 2650 resp: 2650

Join Card: 195.53 = outer (0.75) * inner (261.26) * sel (1.0000e+000)

What happened to the SM Join and the HA Join? Where’s the line saying Now Joining:

GRANDPARENT? We are about to jump into Join order [3] without completing Join order [2].

Look at the cost of completing the nested loop join to greatgrandparent (2,650)—it has already

exceeded the best cost (2,588) for the complete query, so there is no point in going on with this

join order, and the optimizer takes a shortcut.

424 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

The reason why you don’t see the merge join or hash join is that the join to greatgrandparent

is a Cartesian join, so the best possible join cost would have to be at least the sum of the outer

table cost plus the inner table cost. There is no point in saying this three times.

There is a subtle point in this join order that isn’t immediately obvious. Oracle has treated

the join from child → grandparent as a Cartesian join—but we know (from the table definition

code) that the primary key of the child table actually starts with the key of the greatgrandparent,

and that that column should have propagated down through the join. But this is an example

where Oracle does not apply transitive closure.

We can see (rearranging our query) that

 child.id_ggp = parent.id_ggp

and parent.id_ggp = grandparent.id_ggp

and grandparent.id_ggp = greatgrandparent.id

So we can infer that child.id_ggp = greatgrandparent.id. But the optimizer does not attempt

to apply this logic.

Join order[3]

As we go into Join Order[3], the change cycles another step closer to the front of the join

order. We’ve tried all the orders that start with (child, parent), so we move on to starting with

(child, grandparent).

Again we stop without testing the whole join order, and without testing the merge and

hash joins on the very first join.

Moreover, we don’t even report the join (child, grandparent, greatgrandparent, parent)

that ought to be the next order. There’s no point in looking at it; we already know that anything

starting with (child, grandparent) is too expensive.

Join order[3]: CHILD[C]#0 GRANDPARENT[GP]#2 PARENT[P]#1 GREATGRANDPARENT[GGP]#3

Now joining: GRANDPARENT[GP]#2 *******

NL Join

 Outer table: cost: 2517 cdn: 68 rcz: 27 resp: 2517

 Inner table: GRANDPARENT Alias: GP

 Access Path: table-scan Resc: 126

 Join: Resc: 11074 Resp: 11074

 Best NL cost: 11074 resp: 11074

Join Card: 7497.70 = outer (68.01) * inner (110.25) * sel (1.0000e+000)

Join order[4]

The same short-circuiting effect appears as we cycle the next table into second place (child,

greatgrandparent); we evaluate the first join (and only the nested loop option) and find that it

is more expensive than the best so far, so we don’t complete the join order, and don’t examine

any other join orders that start the same way.

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 425

Join order[4]: CHILD[C]#0 GREATGRANDPARENT[GGP]#3 PARENT[P]#1 GRANDPARENT[GP]#2

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 2517 cdn: 68 rcz: 27 resp: 2517

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 63

 Join: Resc: 6796 Resp: 6796

 Best NL cost: 6796 resp: 6796

Join Card: 17766.99 = outer (68.01) * inner (261.26) * sel (1.0000e+000)

Join order[5]

This is another long one. This isn’t too surprising when we look at the names of the tables—

we are starting with a pair that we know to be related, and by the time we join the third table

(grandparent), we will still have some joinable data. We wouldn’t be so lucky if the third table

were greatgrandparent.

Join order[5]: PARENT[P]#1 CHILD[C]#0 GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 631 cdn: 110 rcz: 27 resp: 631

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 277488 Resp: 277488

 Access Path: index (scan)

 Index: C_PK

 rsc_cpu: 15543 rsc_io: 2

 ix_sel: 5.0000e-011 ix_sel_with_filters: 5.0000e-011

 NL Join: resc: 851 resp: 851

 Best NL cost: 851 resp: 851

Using concatenated index cardinality for table PARENT

Revised join selectivity: 1.0000e-004 = 7.9445e-007 * (1/10000) * (1/7.9445e-007)

Join Card: 0.75 = outer (110.05) * inner (68.01) * sel (1.0000e-004)

SM Join

 Outer table:

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

426 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 68

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5018650

 Total Temp space used: 0

 Merge join Cost: 3151 Resp: 3151

HA Join

 Outer table:

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 3149 Resp: 3149

Our current best cost for the full join is 2,588, so it’s worth going on after getting this 851 as

the cost of joining the first two tables.

Join result: cost: 851 cdn: 1 rcz: 54

Now joining: GRANDPARENT[GP]#2 *******

NL Join

 Outer table: cost: 851 cdn: 1 rcz: 54 resp: 851

 Inner table: GRANDPARENT Alias: GP

 Access Path: table-scan Resc: 128

 Join: Resc: 979 Resp: 979

 Access Path: index (unique)

 Index: GP_PK

 rsc_cpu: 15589 rsc_io: 1

 ix_sel: 5.0000e-004 ix_sel_with_filters: 5.0000e-004

 NL Join: resc: 852 resp: 852

 Access Path: index (eq-unique)

 Index: GP_PK

 rsc_cpu: 15789 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 852 resp: 852

 Best NL cost: 852 resp: 852

Using concatenated index cardinality for table GRANDPARENT

Revised join selectivity: 5.0000e-004 = 8.3417e-005 * (1/2000) * (1/8.3417e-005)

Join Card: 0.04 = outer (0.75) * inner (110.25) * sel (5.0000e-004)

SM Join

 Outer table:

 resc: 851 cdn: 1 rcz: 54 deg: 1 resp: 851

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 427

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 70 Total Rows: 1

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000000

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 981 Resp: 981

HA Join

 Outer table:

 resc: 851 cdn: 1 rcz: 54 deg: 1 resp: 851

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 980 Resp: 980

Our current best cost for the full join is 2,588, so it’s still worth going on after getting this

852 as the cost of joining the first three tables.

Join result: cost: 852 cdn: 1 rcz: 77

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 852 cdn: 1 rcz: 77 resp: 852

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 64

 Join: Resc: 917 Resp: 917

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 853 resp: 853

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

428 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 853 resp: 853

 Best NL cost: 853 resp: 853

Join Card: 0.04 = outer (0.04) * inner (261.26) * sel (3.8168e-003)

SM Join

 Outer table:

 resc: 852 cdn: 1 rcz: 77 deg: 1 resp: 852

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 95 Total Rows: 1

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000000

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 919 Resp: 919

HA Join

 Outer table:

 resc: 852 cdn: 1 rcz: 77 deg: 1 resp: 852

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 917 Resp: 917

Join result: cost: 853 cdn: 1 rcz: 96

And in Join order[5] we have a new best join so far at a cost of 853. This will be our target/

limit from now on.

Best so far: TABLE#: 1 CST: 631 CDN: 110 BYTES: 2970

Best so far: TABLE#: 0 CST: 851 CDN: 1 BYTES: 54

Best so far: TABLE#: 2 CST: 852 CDN: 1 BYTES: 77

Best so far: TABLE#: 3 CST: 853 CDN: 1 BYTES: 96

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 429

Join order[6]

We had (parent, child, grandparent, greatgrandparent) as Join order[5], so the next permuta-

tion simply swaps the last two tables. This means we can use the intermediate result from

(parent, child) and go straight into joining greatgrandparent—which is another of those joins

that we know isn’t really a Cartesian join, but Oracle can’t see the connection. So we discard

Join order [6] almost immediately.

Join order[6]: PARENT[P]#1 CHILD[C]#0 GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 851 cdn: 1 rcz: 54 resp: 851

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 64

 Join: Resc: 916 Resp: 916

 Best NL cost: 916 resp: 916

Join Card: 195.53 = outer (0.75) * inner (261.26) * sel (1.0000e+000)

Join order[7]

This is another long one, which results in another best so far.

Join order[7]: PARENT[P]#1 GRANDPARENT[GP]#2 CHILD[C]#0 GREATGRANDPARENT[GGP]#3

Now joining: GRANDPARENT[GP]#2 *******

NL Join

 Outer table: cost: 631 cdn: 110 rcz: 27 resp: 631

 Inner table: GRANDPARENT Alias: GP

 Access Path: table-scan Resc: 126

 Join: Resc: 14473 Resp: 14473

 Access Path: index (unique)

 Index: GP_PK

 rsc_cpu: 15589 rsc_io: 1

 ix_sel: 5.0000e-004 ix_sel_with_filters: 5.0000e-004

 NL Join: resc: 741 resp: 741

 Access Path: index (eq-unique)

 Index: GP_PK

 rsc_cpu: 15789 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 741 resp: 741

 Best NL cost: 741 resp: 741

Using concatenated index cardinality for table GRANDPARENT

Revised join selectivity: 5.0000e-004 = 8.3417e-005 * (1/2000) * (1/8.3417e-005)

Join Card: 6.07 = outer (110.05) * inner (110.25) * sel (5.0000e-004)

SM Join

 Outer table:

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

430 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 761 Resp: 761

HA Join

 Outer table:

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 759 Resp: 759

Join result: cost: 741 cdn: 6 rcz: 50

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 741 cdn: 6 rcz: 50 resp: 741

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 15844 Resp: 15844

 Access Path: index (scan)

 Index: C_PK

 rsc_cpu: 15543 rsc_io: 2

 ix_sel: 5.0000e-011 ix_sel_with_filters: 5.0000e-011

 NL Join: resc: 753 resp: 753

 Best NL cost: 753 resp: 753

Using concatenated index cardinality for table PARENT

Revised join selectivity: 1.0000e-004 = 7.9445e-007 * (1/10000) * (1/7.9445e-007)

Join Card: 0.04 = outer (6.07) * inner (68.01) * sel (1.0000e-004)

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 431

SM Join

 Outer table:

 resc: 741 cdn: 6 rcz: 50 deg: 1 resp: 741

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 65 Total Rows: 6

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000699

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 68

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5018650

 Total Temp space used: 0

 Merge join Cost: 3261 Resp: 3261

HA Join

 Outer table:

 resc: 741 cdn: 6 rcz: 50 deg: 1 resp: 741

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 3259 Resp: 3259

Join result: cost: 753 cdn: 1 rcz: 77

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 753 cdn: 1 rcz: 77 resp: 753

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 64

 Join: Resc: 818 Resp: 818

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 754 resp: 754

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

432 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 754 resp: 754

 Best NL cost: 754 resp: 754

Join Card: 0.04 = outer (0.04) * inner (261.26) * sel (3.8168e-003)

SM Join

 Outer table:

 resc: 753 cdn: 1 rcz: 77 deg: 1 resp: 753

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 95 Total Rows: 1

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000000

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 820 Resp: 820

HA Join

 Outer table:

 resc: 753 cdn: 1 rcz: 77 deg: 1 resp: 753

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 818 Resp: 818

Join result: cost: 754 cdn: 1 rcz: 96

Best so far: TABLE#: 1 CST: 631 CDN: 110 BYTES: 2970

Best so far: TABLE#: 2 CST: 741 CDN: 6 BYTES: 300

Best so far: TABLE#: 0 CST: 753 CDN: 1 BYTES: 77

Best so far: TABLE#: 3 CST: 754 CDN: 1 BYTES: 96

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 433

Join order[8]

For this join order, the optimizer remembers the cost of the (parent, grandparent) join, and

works through to the end of the join—but doesn’t produce a new best cost.

Join order[8]: PARENT[P]#1 GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3 CHILD[C]#0

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 741 cdn: 6 rcz: 50 resp: 741

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 63

 Join: Resc: 1121 Resp: 1121

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 747 resp: 747

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 747 resp: 747

 Best NL cost: 747 resp: 747

Join Card: 6.05 = outer (6.07) * inner (261.26) * sel (3.8168e-003)

SM Join

 Outer table:

 resc: 741 cdn: 6 rcz: 50 deg: 1 resp: 741

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 65 Total Rows: 6

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000699

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 808 Resp: 808

434 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

HA Join

 Outer table:

 resc: 741 cdn: 6 rcz: 50 deg: 1 resp: 741

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 806 Resp: 806

Join result: cost: 747 cdn: 6 rcz: 69

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 747 cdn: 6 rcz: 69 resp: 747

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 15850 Resp: 15850

 Access Path: index (scan)

 Index: C_PK

 rsc_cpu: 15543 rsc_io: 2

 ix_sel: 5.0000e-011 ix_sel_with_filters: 5.0000e-011

 NL Join: resc: 759 resp: 759

 Best NL cost: 759 resp: 759

Using concatenated index cardinality for table PARENT

Revised join selectivity: 1.0000e-004 = 7.9445e-007 * (1/10000) * (1/7.9445e-007)

Join Card: 0.04 = outer (6.05) * inner (68.01) * sel (1.0000e-004)

Join cardinality for NL: 0.04, outer: 6.05, inner: 68.01, sel: 1.0000e-004

SM Join

 Outer table:

 resc: 747 cdn: 6 rcz: 69 deg: 1 resp: 747

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 86 Total Rows: 6

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000699

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 68

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 435

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5018650

 Total Temp space used: 0

 Merge join Cost: 3267 Resp: 3267

HA Join

 Outer table:

 resc: 747 cdn: 6 rcz: 69 deg: 1 resp: 747

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 3265 Resp: 3265

Join order[9]

This join order starts with one of those expensive Cartesian joins, and very rapidly terminates—

and the related join (parent, greatgrandparent, grandparent, child) is not even considered.

Join order[9]: PARENT[P]#1 GREATGRANDPARENT[GGP]#3 CHILD[C]#0 GRANDPARENT[GP]#2

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 631 cdn: 110 rcz: 27 resp: 631

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 63

 Join: Resc: 7553 Resp: 7553

 Best NL cost: 7553 resp: 7553

Join Card: 28751.26 = outer (110.05) * inner (261.26) * sel (1.0000e+000)

Join order[10]

Again, the join order starts with one of those expensive Cartesian joins, and terminates imme-

diately—and the related join (grandparent, child, greatgrandparent, parent) is not considered.

Join order[10]: GRANDPARENT[GP]#2 CHILD[C]#0 PARENT[P]#1 GREATGRANDPARENT[GGP]#3

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 128 cdn: 110 rcz: 23 resp: 128

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 276985 Resp: 276985

 Best NL cost: 276985 resp: 276985

Join Card: 7497.70 = outer (110.25) * inner (68.01) * sel (1.0000e+000)

436 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

Join order[11]

We finally get to a join with no Cartesian joins in it. It runs to completion and happens to

produce a new best so far that is a significant improvement on the previous record.

Join order[11]: GRANDPARENT[GP]#2 PARENT[P]#1 CHILD[C]#0 GREATGRANDPARENT[GGP]#3

Now joining: PARENT[P]#1 *******

NL Join

 Outer table: cost: 128 cdn: 110 rcz: 23 resp: 128

 Inner table: PARENT Alias: P

 Access Path: table-scan Resc: 629

 Join: Resc: 69338 Resp: 69338

 Access Path: index (scan)

 Index: P_PK

 rsc_cpu: 15523 rsc_io: 2

 ix_sel: 5.0000e-007 ix_sel_with_filters: 5.0000e-007

 NL Join: resc: 348 resp: 348

 Best NL cost: 348 resp: 348

Using concatenated index cardinality for table GRANDPARENT

Revised join selectivity: 5.0000e-004 = 8.3417e-005 * (1/2000) * (1/8.3417e-005)

Join Card: 6.07 = outer (110.25) * inner (110.05) * sel (5.0000e-004)

SM Join

 Outer table:

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 761 Resp: 761

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 437

HA Join

 Outer table:

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 759 Resp: 759

Join result: cost: 348 cdn: 6 rcz: 50

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 348 cdn: 6 rcz: 50 resp: 348

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 15450 Resp: 15450

 Access Path: index (scan)

 Index: C_PK

 rsc_cpu: 15543 rsc_io: 2

 ix_sel: 5.0000e-011 ix_sel_with_filters: 5.0000e-011

 NL Join: resc: 360 resp: 360

 Best NL cost: 360 resp: 360

Using concatenated index cardinality for table PARENT

Revised join selectivity: 1.0000e-004 = 7.9445e-007 * (1/10000) * (1/7.9445e-007)

Join Card: 0.04 = outer (6.07) * inner (68.01) * sel (1.0000e-004)

SM Join

 Outer table:

 resc: 348 cdn: 6 rcz: 50 deg: 1 resp: 348

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 65 Total Rows: 6

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000699

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 68

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5018650

 Total Temp space used: 0

 Merge join Cost: 2868 Resp: 2868

438 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

HA Join

 Outer table:

 resc: 348 cdn: 6 rcz: 50 deg: 1 resp: 348

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 2866 Resp: 2866

Join result: cost: 360 cdn: 1 rcz: 77

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 360 cdn: 1 rcz: 77 resp: 360

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 64

 Join: Resc: 425 Resp: 425

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 361 resp: 361

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 361 resp: 361

 Best NL cost: 361 resp: 361

Join Card: 0.04 = outer (0.04) * inner (261.26) * sel (3.8168e-003)

SM Join

 Outer table:

 resc: 360 cdn: 1 rcz: 77 deg: 1 resp: 360

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 95 Total Rows: 1

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000000

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 439

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 427 Resp: 427

HA Join

 Outer table:

 resc: 360 cdn: 1 rcz: 77 deg: 1 resp: 360

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 425 Resp: 425

Join result: cost: 361 cdn: 1 rcz: 96

Best so far: TABLE#: 2 CST: 128 CDN: 110 BYTES: 2530

Best so far: TABLE#: 1 CST: 348 CDN: 6 BYTES: 300

Best so far: TABLE#: 0 CST: 360 CDN: 1 BYTES: 77

Best so far: TABLE#: 3 CST: 361 CDN: 1 BYTES: 96

Join order[12]

This join order saves a little time because it can use the partial result on (grandparent, parent)

from Join order [11]. But then it stops after the third join (greatgrandparent) because the cost

has exceeded the best so far.

Join order[12]: GRANDPARENT[GP]#2 PARENT[P]#1 GREATGRANDPARENT[GGP]#3 CHILD[C]#0

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 348 cdn: 6 rcz: 50 resp: 348

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 63

 Join: Resc: 728 Resp: 728

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 354 resp: 354

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 354 resp: 354

 Best NL cost: 354 resp: 354

Join Card: 6.05 = outer (6.07) * inner (261.26) * sel (3.8168e-003)

440 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

SM Join

 Outer table:

 resc: 348 cdn: 6 rcz: 50 deg: 1 resp: 348

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 65 Total Rows: 6

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000699

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 415 Resp: 415

HA Join

 Outer table:

 resc: 348 cdn: 6 rcz: 50 deg: 1 resp: 348

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 413 Resp: 413

Join result: cost: 354 cdn: 6 rcz: 69

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 354 cdn: 6 rcz: 69 resp: 354

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 15456 Resp: 15456

 Access Path: index (scan)

 Index: C_PK

 rsc_cpu: 15543 rsc_io: 2

 ix_sel: 5.0000e-011 ix_sel_with_filters: 5.0000e-011

 NL Join: resc: 366 resp: 366

 Best NL cost: 366 resp: 366

Using concatenated index cardinality for table PARENT

Revised join selectivity: 1.0000e-004 = 7.9445e-007 * (1/10000) * (1/7.9445e-007)

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 441

Join Card: 0.04 = outer (6.05) * inner (68.01) * sel (1.0000e-004)

Join cardinality for NL: 0.04, outer: 6.05, inner: 68.01, sel: 1.0000e-004

SM Join

 Outer table:

 resc: 354 cdn: 6 rcz: 69 deg: 1 resp: 354

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 86 Total Rows: 6

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5000699

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 68

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5018650

 Total Temp space used: 0

 Merge join Cost: 2874 Resp: 2874

HA Join

 Outer table:

 resc: 354 cdn: 6 rcz: 69 deg: 1 resp: 354

 Inner table: CHILD Alias: C

 resc: 2517 cdn: 68 rcz: 27 deg: 1 resp: 2517

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 2872 Resp: 2872

Join order[13]

We get a little way through this join order, and then terminate on the third join—again the

visible Cartesian join into child causes a problem.

Join order[13]: GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3 CHILD[C]#0 PARENT[P]#1

Now joining: GREATGRANDPARENT[GGP]#3 *******

NL Join

 Outer table: cost: 128 cdn: 110 rcz: 23 resp: 128

 Inner table: GREATGRANDPARENT Alias: GGP

 Access Path: table-scan Resc: 63

 Join: Resc: 7049 Resp: 7049

442 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 Access Path: index (unique)

 Index: GGP_PK

 rsc_cpu: 15558 rsc_io: 1

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 238 resp: 238

 Access Path: index (eq-unique)

 Index: GGP_PK

 rsc_cpu: 15758 rsc_io: 1

 ix_sel: 0.0000e+000 ix_sel_with_filters: 0.0000e+000

 NL Join: resc: 238 resp: 238

 Best NL cost: 238 resp: 238

Join Card: 109.94 = outer (110.25) * inner (261.26) * sel (3.8168e-003)

Join cardinality for NL: 109.94, outer: 110.25, inner: 261.26, sel: 3.8168e-003

SM Join

 Outer table:

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 Merge join Cost: 194 Resp: 194

HA Join

 Outer table:

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 Inner table: GREATGRANDPARENT Alias: GGP

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 193 Resp: 193

Join result: cost: 193 cdn: 110 rcz: 42

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 443

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 193 cdn: 110 rcz: 42 resp: 193

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 277050 Resp: 277050

 Best NL cost: 277050 resp: 277050

Join Card: 7476.42 = outer (109.94) * inner (68.01) * sel (1.0000e+000)

Join order[14]

This join order reuses the partial result for (grandparent, greatgrandparent) from Join order

[13], but stops after attempting all possible ways of joining on the third (parent) table.

Join order[14]: GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3 PARENT[P]#1 CHILD[C]#0

Now joining: PARENT[P]#1 *******

NL Join

 Outer table: cost: 193 cdn: 110 rcz: 42 resp: 193

 Inner table: PARENT Alias: P

 Access Path: table-scan Resc: 629

 Join: Resc: 69403 Resp: 69403

 Access Path: index (scan)

 Index: P_PK

 rsc_cpu: 15523 rsc_io: 2

 ix_sel: 5.0000e-007 ix_sel_with_filters: 5.0000e-007

 NL Join: resc: 413 resp: 413

 Best NL cost: 413 resp: 413

Using concatenated index cardinality for table GRANDPARENT

Revised join selectivity: 5.0000e-004 = 8.3417e-005 * (1/2000) * (1/8.3417e-005)

Join Card: 6.05 = outer (109.94) * inner (110.05) * sel (5.0000e-004)

SM Join

 Outer table:

 resc: 193 cdn: 110 rcz: 42 deg: 1 resp: 193

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 57 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

444 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 826 Resp: 826

HA Join

 Outer table:

 resc: 193 cdn: 110 rcz: 42 deg: 1 resp: 193

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 824 Resp: 824

Join order[15]

By the time we get to Join order [15], the greatgrandparent table has finally reached the front

of the join order. Unfortunately, the second table is the child table, with that annoying Cartesian

join effect that terminates this join, and ensures that the optimizer doesn’t even consider the

join (greatgrandparent, child, grandparent, parent).

Join order[15]: GREATGRANDPARENT[GGP]#3 CHILD[C]#0 PARENT[P]#1 GRANDPARENT[GP]#2

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 64 cdn: 261 rcz: 19 resp: 64

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 656970 Resp: 656970

 Best NL cost: 656970 resp: 656970

Join Card: 17766.99 = outer (261.26) * inner (68.01) * sel (1.0000e+000)

Join order[16]

Again, we get a Cartesian join between the first two tables, which shortcuts this join calculation

and eliminates another without printing it.

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 445

Join order[16]: GREATGRANDPARENT[GGP]#3 PARENT[P]#1 CHILD[C]#0 GRANDPARENT[GP]#2

Now joining: PARENT[P]#1 *******

NL Join

 Outer table: cost: 64 cdn: 261 rcz: 19 resp: 64

 Inner table: PARENT Alias: P

 Access Path: table-scan Resc: 629

 Join: Resc: 164281 Resp: 164281

 Best NL cost: 164281 resp: 164281

Join Card: 28751.26 = outer (261.26) * inner (110.05) * sel (1.0000e+000)

Join order[17]

Finally, we get a join order that introduces an entirely new option—when we join the

grandparent to the greatgrandparent, we find that there are two possible strategies for doing

the sort merge join. We can avoid sorting the data from the grandparent if we use its primary

key index to get to the rows. This will require us to acquire excess data and discard some of it,

and the extra work may prove to be more expensive than the cost of the sort we are avoiding.

The calculation stops after three tables—again the Cartesian join has its effect.

Join order[17]: GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2 CHILD[C]#0 PARENT[P]#1

Now joining: GRANDPARENT[GP]#2 *******

NL Join

 Outer table: cost: 64 cdn: 261 rcz: 19 resp: 64

 Inner table: GRANDPARENT Alias: GP

 Access Path: table-scan Resc: 126

 Join: Resc: 32906 Resp: 32906

 Access Path: index (scan)

 Index: GP_PK

 rsc_cpu: 23207 rsc_io: 3

 ix_sel: 1.0000e-003 ix_sel_with_filters: 1.0000e-003

 NL Join: resc: 849 resp: 849

 Best NL cost: 849 resp: 849

Join Card: 109.94 = outer (261.26) * inner (110.25) * sel (3.8168e-003)

Join cardinality for NL: 109.94, outer: 261.26, inner: 110.25, sel: 3.8168e-003

SM Join

 Outer table:

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:1 distribution:2 #groups:1

446 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 31 Total Rows: 261

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5094402

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 194 Resp: 194

Then we do the calculation for the second possibility on the merge join—the one that uses

the primary key index to avoid a sort. Because the first data set is going to be presorted when it

arrives, we see only one section labeled SORT resource. Unfortunately, it turns out to be a waste

of effort, as it is a more expensive strategy than not using the index.

Despite comments in the documentation, if Oracle were able to acquire the second set of

data in sorted order, it would still sort it—I think this is to cater to the general case where the

join condition is not a test for equality and the second set of data has to be instantiated so that

a range-based join can keep resetting its start position in the second data set.

SM Join (with index on outer)

 Access Path: index (no start/stop keys)

 Index: GGP_PK

 rsc_cpu: 2266849 rsc_io: 253

 ix_sel: 1.0000e+000 ix_sel_with_filters: 1.0000e+000

 Outer table:

 resc: 253 cdn: 261 rcz: 19 deg: 1 resp: 253

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 36 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 382 Resp: 382

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 447

HA Join

 Outer table:

 resc: 64 cdn: 261 rcz: 19 deg: 1 resp: 64

 Inner table: GRANDPARENT Alias: GP

 resc: 128 cdn: 110 rcz: 23 deg: 1 resp: 128

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 193 Resp: 193

Join result: cost: 193 cdn: 110 rcz: 42

Now joining: CHILD[C]#0 *******

NL Join

 Outer table: cost: 193 cdn: 110 rcz: 42 resp: 193

 Inner table: CHILD Alias: C

 Access Path: table-scan Resc: 2517

 Join: Resc: 277050 Resp: 277050

 Best NL cost: 277050 resp: 277050

Join Card: 7476.42 = outer (109.94) * inner (68.01) * sel (1.0000e+000)

Join order[18]

Our final join order reuses the partial result for (greatgrandparent, grandparent) from

Join order [17], and stops on the third table.

Join order[18]: GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2 PARENT[P]#1 CHILD[C]#0

Now joining: PARENT[P]#1 *******

NL Join

 Outer table: cost: 193 cdn: 110 rcz: 42 resp: 193

 Inner table: PARENT Alias: P

 Access Path: table-scan Resc: 629

 Join: Resc: 69403 Resp: 69403

 Access Path: index (scan)

 Index: P_PK

 rsc_cpu: 15523 rsc_io: 2

 ix_sel: 5.0000e-007 ix_sel_with_filters: 5.0000e-007

 NL Join: resc: 413 resp: 413

 Best NL cost: 413 resp: 413

Using concatenated index cardinality for table GRANDPARENT

Revised join selectivity: 5.0000e-004 = 8.3417e-005 * (1/2000) * (1/8.3417e-005)

Join Card: 6.05 = outer (109.94) * inner (110.05) * sel (5.0000e-004)

448 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

SM Join

 Outer table:

 resc: 193 cdn: 110 rcz: 42 deg: 1 resp: 193

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:1 distribution:2 #groups:1

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 57 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 SORT resource Sort statistics

 Sort width: 58 Area size: 208896 Max Area size: 10485760

 Degree: 1

 Blocks to Sort: 1 Row size: 40 Total Rows: 110

 Initial runs: 1 Merge passes: 0 IO Cost / pass: 0

 Total IO sort cost: 0 Total CPU sort cost: 5033608

 Total Temp space used: 0

 Merge join Cost: 826 Resp: 826

HA Join

 Outer table:

 resc: 193 cdn: 110 rcz: 42 deg: 1 resp: 193

 Inner table: PARENT Alias: P

 resc: 631 cdn: 110 rcz: 27 deg: 1 resp: 631

 using join:8 distribution:2 #groups:1

 Hash join one ptn Resc: 1 Deg: 1

 hash_area: 124 (max=2560) buildfrag: 1 probefrag: 1 ppasses: 1

 Hash join Resc: 824 Resp: 824

The next two lines appeared in 10g. I don’t understand the significance of the (newjo-stop-1),

although the permutation count (perm:)of 18 and the maximum permutation (maxperm:) of 2,000

are references to the permutations we saw and the parameter _optimizer_max_permutations

respectively.

The (newjo-save) line simply lists the join order that was finally chosen by quoting the

table numbers in order, using the numbers given to the tables in the first join order.

(newjo-stop-1) k:0, spcnt:0, perm:18, maxperm:2000

(newjo-save) [2 1 0 3]

Finally, we have got to the end of the work, and Oracle reports the join order that gave us

the best plan. (This is a luxury introduced by 10g and only back-ported to the later versions of 9i. In

earlier versions you had to read backwards up the file to the last appearance of Best so far:.)

The final cost is also reported here, broken down into its I/O and CPU components. As we

have done earlier in the file, we can divide the quoted CPU cost by 5,000,000 to find the value

to add to the I/O cost to get the overall cost.

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 449

Final - All Rows Plan:

 JOIN ORDER: 11

 CST: 361 CDN: 1 RSC: 361 RSP: 361 BYTES: 96

 IO-RSC: 360 IO-RSP: 360 CPU-RSC: 5892137 CPU-RSP: 5892137

Join Evaluation Summary
It’s a lot of work to get this far, and a lot of it is very repetitive. To summarize what has

happened with the join orders, I have extracted the orders that the optimizer investigated, and

listed them separately here. It can be quite informative simply to use grep (Unix) or find

(Windows) to list all the lines starting with Join order to see how many join orders the opti-

mizer investigated—and how many subplans.

Join order[1]: CHILD[C]#0 PARENT[P]#1 GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3

Join order[2]: CHILD[C]#0 PARENT[P]#1 GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2

Join order[3]: CHILD[C]#0 GRANDPARENT[GP]#2 PARENT[P]#1 GREATGRANDPARENT[GGP]#3

Join order[4]: CHILD[C]#0 GREATGRANDPARENT[GGP]#3 PARENT[P]#1 GRANDPARENT[GP]#2

Join order[5]: PARENT[P]#1 CHILD[C]#0 GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3

Join order[6]: PARENT[P]#1 CHILD[C]#0 GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2

Join order[7]: PARENT[P]#1 GRANDPARENT[GP]#2 CHILD[C]#0 GREATGRANDPARENT[GGP]#3

Join order[8]: PARENT[P]#1 GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3 CHILD[C]#0

Join order[9]: PARENT[P]#1 GREATGRANDPARENT[GGP]#3 CHILD[C]#0 GRANDPARENT[GP]#2

Join order[10]: GRANDPARENT[GP]#2 CHILD[C]#0 PARENT[P]#1 GREATGRANDPARENT[GGP]#3

Join order[11]: GRANDPARENT[GP]#2 PARENT[P]#1 CHILD[C]#0 GREATGRANDPARENT[GGP]#3

Join order[12]: GRANDPARENT[GP]#2 PARENT[P]#1 GREATGRANDPARENT[GGP]#3 CHILD[C]#0

Join order[13]: GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3 CHILD[C]#0 PARENT[P]#1

Join order[14]: GRANDPARENT[GP]#2 GREATGRANDPARENT[GGP]#3 PARENT[P]#1 CHILD[C]#0

Join order[15]: GREATGRANDPARENT[GGP]#3 CHILD[C]#0 PARENT[P]#1 GRANDPARENT[GP]#2

Join order[16]: GREATGRANDPARENT[GGP]#3 PARENT[P]#1 CHILD[C]#0 GRANDPARENT[GP]#2

Join order[17]: GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2 CHILD[C]#0 PARENT[P]#1

Join order[18]: GREATGRANDPARENT[GGP]#3 GRANDPARENT[GP]#2 PARENT[P]#1 CHILD[C]#0

Reduced to the simple numeric form to decrease the visual confusion, and listing the

“missing” join orders at the spot that we would expect them to be, we get the following:

Join order[1]: #0 #1 #2 #3 Best so far ***

Join order[2]: #0 #1 #3 #2 Failed on 3rd

Join order[3]: #0 #2 #1 #3 Failed on 2nd

 Skipped: #0, #2, #3, #1

Join order[4]: #0 #3 #1 #2 Failed on 2nd

 Skipped: #0, #3, #2, #1

450 C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E

Join order[5]: #1 #0 #2 #3 Best so far ***

Join order[6]: #1 #0 #3 #2 Failed on 3rd

Join order[7]: #1 #2 #0 #3 Best so far ***

Join order[8]: #1 #2 #3 #0 ***

Join order[9]: #1 #3 #0 #2 Failed on 2nd

 Skipped: #1, #3, #2, #0

Join order[10]: #2 #0 #1 #3 Failed on 2nd

 Skipped: #2, #0, #3, #1

Join order[11]: #2 #1 #0 #3 Best so far ***

Join order[12]: #2 #1 #3 #0 ***

Join order[13]: #2 #3 #0 #1 Failed on 3rd

Join order[14]: #2 #3 #1 #0 Failed on 3rd

Join order[15]: #3 #0 #1 #2 Failed on 2nd

 Skipped: #3, #0, #2, #1

Join order[16]: #3 #1 #0 #2 Failed on 2nd

 Skipped: #3, #1, #2, #0

Join order[17]: #3 #2 #0 #1 Failed on 3rd

Join order[18]: #3 #2 #1 #0 Failed on 3rd

As you can see from this listing, for small numbers of tables, the optimizer will cycle

through all the possible permutations in a very straightforward fashion. But it will simply skip

some permutations that cannot possibly be any good, because a similar permutation with the

same starting order of tables is known to be a bad choice. In fact, with a potential 24 join orders,

Oracle only ran the calculations to completion on six of the possibilities (marked with ***).

For larger numbers of tables, things can be different. In the first place, the optimizer may

decide that after testing a few join orders the cost of executing the query is so small that it might

as well go ahead without checking any more join orders. Essentially, as soon as the time spent

in checking join orders exceeds the predicted run time, Oracle runs with the best its got so far.

This does mean that if the optimizer happens to pick an unsuitable starting table—

because it got the cardinality wrong—the standard permutation cycle can cause a problem. In

a ten-table join, it would take a long time to cycle the first table out of pole position. So the opti-

mizer has an algorithm that comes into play with larger numbers of tables, and the modified

algorithm starts switching the leading tables around if too many join orders have been tested

without a reasonable cost appearing.

■Note For users of Oracle 8, I understand that changing the parameter optimizer_max_permutations

from its default of 80,000 to any other value will make Oracle 8 switch to the new algorithm. For users of

Oracle 10, you might note that there is a new parameter called _optimizer_join_order_control, which

takes the value 3—so Oracle Corp. may have come up with yet another, better algorithm for permuting

through the join orders.

C H A P T E R 1 4 ■ T H E 1 0 0 5 3 T R A C E F I L E 451

Another of the special cases comes into play with large numbers of tables—where “large”

means at least seven. As it works through possible join orders, the optimizer simply ignores,

and doesn’t even list, any that would require too many Cartesian joins (other than single-row

Cartesian joins). The parameter _optimizer_search_limit seems to be the parameter that

controls the limit on the number of Cartesian joins allowed, and has a default value of 5. Of

course, it is instructive to see what happens if you give Oracle a query that joins seven tables,

with no scope for anything other than Cartesian joins all the way.

There is a lot more to investigate in the 10053 trace—in particular the information it gives

you with more complex SQL statements that require the optimizer to evaluate subplans for

several transformations of your query, and then consider various optional execution mecha-

nisms such as star joins. And I haven’t even mentioned what goes on when you use the

first_rows(N) optimization hint.

But I have to leave something for volumes 2 and 3.

Test Cases
The files in the subdirectory for this chapter are shown in Table 14-3.

Table 14-3. Chapter 14 Test Cases

Script Comments

big_10053.sql The script to create the data for this trace file

setenv.sql Sets a standardized environment for SQL*Plus

453

■ ■ ■

A P P E N D I X A

Upgrade Headaches

When you upgrade from one version of Oracle to another, or even from one patch release to

the next, there are bound to be some areas of your code where things just go wrong. The optimizer

is a prime target for this kind of issue. New features that improve 99% of all known queries may

cripple your database because you fall into the remaining 1% of special cases.

This appendix is just a brief summary of features of the optimizer that may cause problems

because implementation details have changed across versions 8i, 9i, and 10g. Every feature

(and the possible problem it may introduce) is described in greater detail in the body of the

book. The purpose of pulling all the changes into one appendix is to give you a quick reference

point should you hit a strange performance problem on an upgrade.

SELECTIVITY AND CARDINALITY

Selectivity and cardinality are very closely related—the selectivity represents that fraction of rows that will be

selected from a set, and the cardinality represents the number of rows that will be extracted. As a general rule,

then, you can say

 cardinality = number of rows out = selectivity * number of rows in.

In this appendix, I have referenced only the selectivity when commenting on the effects of upgrades on

the optimizer. This is simply to reduce the number of times I would have to repeat phrases like, “And when the

selectivity changes, the cardinality changes, hence ...”

It’s worth emphasizing that I believe that (almost all of) the changes listed in this appendix

are generally good ideas. But any change in the optimizer may be sufficient to make a piece of

SQL choose a different execution path, and sometimes the change in path will have an unfor-

tunate impact on performance. Fortunately, there are many features that can be disabled by

setting an associated hidden parameter—as indicated in Appendix B by the list of parameters

controlled by the master parameter optimizer_features_enable.

dbms_stats
If you haven’t yet moved from using the analyze command to using the dbms_stats package,

you are going to have to one day. When that day comes, make sure you test carefully, as there

are three issues that you have to face.

454 A P P E N D I X A ■ U P G R A D E H E A D A C H E S

First, some statistics will be different because the two mechanisms just do things differ-

ently, so some execution paths are likely to change. A lightweight example is that analyze does

not include the length byte in the value for avg_col_length, which is used to calculate the cost

of sorts and hash joins. A heavy-weight example is that the analyze command does a poor job

of collecting statistics on partitioned tables, particularly the values for num_distinct, and the

dbms_stats package will produce some dramatically different figures.

Second, you need to ensure that you are collecting the same statistics with dbms_stats as

you are with analyze—for example, analyze table and gather_table_stats have different

default behavior; the analyze command will collect index statistics, the gather_table_stats

procedure will not.

Finally, dependent on version, the dbms_stats package uses normal SQL to collect a lot of

the statistics, rather than custom low-level code. This allows parallelism to be invoked auto-

matically, but means that some stats collections may take longer to run than the equivalent

analyze commands.

Even if you are already running dbms_stats, you aren’t safe from change. As you upgrade

from version to version of Oracle, the default behavior of the procedures in the dbms_stats

package changes. For example, the default method_opt for tables in 10g is for all columns size

auto, so you’ll be getting histograms you weren’t expecting if you let 10g do its own thing,

because 10g will decide which columns need histograms, and how many buckets to use for

those histograms.

Moreover, in 10g you will find that a job is automatically created that runs every 24 hours

to execute a statistics collection against all tables that are missing statistics, or have “stale”

statistics. This could be a lot of redundant work, and the amount could vary randomly and dramat-

ically from day to day.

There are a number of design decisions built into the dbms_stats that can cause extreme

variations in the statistics produced or the time taken to produce them. The most significant of

these probably appears when collecting statistics for indexes—according to one MetaLink note,

the code wants to use a sample of at least 919 leaf blocks to generate statistics for an index. This

can make it impossible to use a small sample size, and the problem can be extreme for bitmap

indexes.

Bear in mind that most objects don’t need extremely accurate statistics; and a detailed,

minimalist approach to collecting statistics is a good thing—if you can find time to set it up and

if you can work around the bugs.

Frequency Histograms
If you have been collecting frequency histograms, you may find that dbms_stats doesn’t work

very well for you when you decide that it’s time to stop using the analyze command.

The analyze command will build a frequency histogram on N distinct values if you specify

N buckets. In 9i and 10.1, the equivalent dbms_stats call may need many more buckets specified

before it notices the option for building a frequency histogram.

In fact, somewhere around the 200 mark you may find that you can no longer create a

frequency histogram because you can’t specify a large enough bucket count. In cases like this,

you may have to write your own SQL to collect suitable figures, and use the

dbms_stats.set_column_stats() procedure to get those figures into the data dictionary. (This

defect has been addressed in 10.2.)

A P P E N D I X A ■ U P G R A D E H E A D A C H E S 455

CPU Costing
There are two options for CPU costing (system statistics) in 10g. Unless you are already familiar

with the use of system statistics in 9i, you will find that 10g will force your system into CPU

costing using some special noworkload statistics. This will affect the cost of tablescans signifi-

cantly—but the scale of the change is different from the changes caused by the normal CPU

costing algorithm used by 9i. In particular, you will also notice a greater variation in costs if you

have code that modifies the db_file_multiblock_read_count for different processes.

If you decide to start gathering “workload” system statistics in 10g, the effects could be

quite surprising when compared with noworkload system statistics. Moreover, the

dbms_stats.delete_system_stats() procedure doesn’t seem to work, so the only way to get rid

of the gathered statistics if you decide you don’t want them is to do an explicit delete from

the sys.aux_stats$ table. (This is fixed in 10.2—so you do have a legal way of getting back to

noworkload system statistics after experimenting with gathered system statistics.)

Rounding Errors
The way in which the optimizer deals with rounding varies from version to version. Some results

are rounded properly, some are truncated, and for some values the ceiling is used. This can

lead to odd changes in estimated costs and cardinalities—which could result in changes in

execution plan—as you upgrade. Most significantly, perhaps, as you upgrade from 8i to 9i,

there are cases where 8i rounds intermediate results, but 9i only rounds at the end of the entire

calculation. This can make a big difference to the final result.

One particular point to watch out for with rounding: the parameter optimizer_index_

cost_adj can be used to scale down the cost of index-driven single-block reads, but this increases

the relative impact of rounding errors. If you are running 9i, you should be using system statistics

(CPU costing) to deal with any imbalance between tablescans and indexed access paths. CPU

costing scales up the cost of multiblock reads, which means it reduces the impact of rounding

errors.

If you still have to upgrade from 8i, the change in rounding strategy may cause you particular

problems if you have systems that store multiple sets of reference data in a single table with a

type column. If you do run into this problem, re-creating the table as a list-partitioned table

should help.

Bind Variable Peeking
Bind variables always cause confusion. A bounded range using bind variables is given a selectivity

of 0.0025 (0.25% or 1 in 400), which introduces a bias towards indexed access. An unbounded range

using bind variables is given a selectivity of 0.05 (5% or 1 in 20), which tends to introduce a bias

towards tablescans. An equality using a bind variable uses the value of user_tab_columns.density.

In all three cases, histograms are ignored and the resources used to build them will have been

wasted. (The density may have been modified as a histogram was created, so the effort isn’t

entirely pointless.)

As of 9i, the optimizer usually peeks at the actual values whenever it has to optimize a

statement using bind variables, and uses the actual values to evaluate an execution path. So

when you upgrade from 8i to 9i, you may find some SQL statements change their execution

456 A P P E N D I X A ■ U P G R A D E H E A D A C H E S

path for no apparent reason. Moreover, a statement could change its execution plan from day

to day, or even hour to hour, because it gets flushed from the shared pool from time to time,

and the next time it gets executed it is reoptimized with a new set of values that happen to

produce a different execution path.

Nulls Across Joins
The basic formula for handling nulls across joins seems to have changed between 8i and 9i. In

8i, the optimizer dealt with nulls in join columns by factoring them out in the join selectivity

formula, but in 9i it seems there is an alternative strategy to handle them in the join cardinality

formula by adding is not null as an explicit join predicate for each column involved.

This alternative rule comes into play when num_nulls exceeds 5% of num_rows.

B-tree to Bitmap Conversions
One of the optimizer’s strategies is to range scan B-tree indexes to acquire lists of rowids, convert

the lists of rowids into the equivalent bitmaps, and perform bitwise operations to identify a

small set of rows. Effectively, the optimizer can take sets of rowids from index range scans and

convert them to bitmap indexes on the fly before doing an index_combine on the resulting

bitmap indexes.

In 8i, only tables with existing bitmap indexes could be subject to this treatment, unless

the parameter _b_tree_bitmap_plans had been set to relax the requirement for a preexisting

bitmap index.

In 9i, the default value for this parameter changed from false to true—so you may see

execution plans involving bitmap conversions after you’ve upgraded, even though you don’t

have a single bitmap index in your database. Unfortunately, because of the implicit packing

assumption that the optimizer uses for bitmap indexes, this will sometimes be a very bad idea.

As a related issue, this change can make it worth using the minimize_records_per_block

option on all your important tables.

Index Skip-Scans
I have not mentioned the index skip-scan in this volume; it is an access path that appeared in

9i for using an index to satisfy a query that (a) does not reference the first column(s) of the index,

but (b) could use the index quite well by treating it as a collection of several small subindexes.

This is a beneficial feature in some cases, particularly if you have compressed indexes with

a very low number of distinct values in the first column(s). But occasionally you may find that

a skip-scan is causing performance problems. If necessary, you can disable the feature by setting

the parameter _optimizer_skip_scan_enabled to false.

AND-Equal
An execution mechanism known as the and_equal can be used on queries that involve equalities on

single-column, nonunique indexes. Although there are lots of (bad) single-column indexes in

the world, you probably won’t see this mechanism very often under cost based optimization

A P P E N D I X A ■ U P G R A D E H E A D A C H E S 457

until you upgrade from 8i to 9i. As a weak side effect of CPU costing in 9i, there may be cases

where the optimizer suddenly starts to use the and_equal mechanism where previously it was

using a single index, or tablescan. The effect will not always be an improvement.

However, with the arrival of 10g, the optimizer no longer considers the and_equal mecha-

nism unless hinted—and the hint is deprecated. The mechanism has been largely superseded

by the index_combine mechanism. Index_combine uses bit-wise operations on bitmap indexes;

it has been around since 8i, and is much more flexible than and_equal, as it isn’t restricted to

equality predicates or to single-column, nonunique indexes. (The index join is another of the

newer, more flexible mechanisms that has also helped to sound the death knell on and_equal.)

The optimizer’s ability to use index_combine as a substitute for and_equal (typically) requires

the parameter _b_tree_bitmap_plans to be set to true—which is the default for 9i and 10g (see

earlier). When this parameter is set to true, the optimizer can perform B-tree to bitmap conver-

sion on tables that have no bitmap indexes. I suspect this is generally going to be a little more

CPU and memory intensive than doing a straight merge join of the sets of rowids directly—but

the trade-off is the increased availability of the path.

But there will be cases where a change in mechanism results in a change in cost; some-

times that change in cost will cause a change in the execution path; just occasionally the new

mechanism will be less efficient than the old.

In summary, an upgrade from 8i to 9i may give you some undesirable path changes because

the optimizer starts using the and_equal mechanism more frequently; and an upgrade from 9i

to 10g may give you some undesirable path changes because the optimizer stops using the

and_equal mechanism completely.

Index Hash Join
These don’t often appear as the default path in 8i, but when you upgrade to 9i and enable CPU

costing, they may appear more often because tablescans become more expensive. The index

hash join (or just index join) works by combining the contents of two (or more) indexes on a

table to avoid visiting the table. Unlike the older and_equal path, the indexes don’t have to be

single column, and the predicates don’t have to be equalities. To date, I haven’t seen an example

where the index join caused a performance problem.

In-List Fixed
The optimizer automatically converts an in-list into a set of predicates separated by the or

operator. The sample code shows the before and after versions of such a conversion:

where colx in (1,8,32)

where colx = 1

or colx = 8

or colX = 32

The standard formula that the optimizer uses for calculating the selectivity of predicates

combined with or is not appropriate to an or expansion of an in-list, as the formula includes a

factor (catering to double-counting) that is irrelevant in this special case.

458 A P P E N D I X A ■ U P G R A D E H E A D A C H E S

However, the optimizer used this standard formula to handle in-lists all the way through

8i, and only introduced a corrected formula for in-lists in 9i. This means that the selectivity of

an in-list goes up in 9i. The most visible side effect of this is that an in-list iterator that originally

used an index may switch to using a tablescan. Alternatively, the change in selectivity may even

result in a change in the join order.

The change of formula has not yet (as far as 10.1.0.4) been applied to the not in clause.

Transitive Closure

• If x > 10 and y = x, then the optimizer will infer that y > 10.

• If x = 10 and y = x, then the optimizer will infer that y = 10.

This type of inference is known as transitive closure, and the optimizer applies it in two

different ways, depending on version and parameter settings. In the case where the constant

predicate is not an equality, the optimizer will generate a third predicate for your query, hence

the first example will become

where x > 10

and y > 10

and x = y

In the case where the constant predicate is an equality (as in the second example), the

optimizer will generate a second constant predicate, but lose the join predicate if

query_rewrite_enabled = false, hence

where x = 10

and y = 10

On the other hand, if query_rewrite_enabled = true, then 8i and 9i will keep the join predicate

even in this case, hence

where x = 10

and y = 10

and x = y

Anytime the optimizer introduces an extra predicate, it could affect the cardinality calcu-

lations, so transitive closure is always something to be aware of. However, the most important

point in this paragraph is that the upgrade to 10g may cause havoc with some execution plans

because query_rewrite_enabled defaults to true, and you will suddenly stop losing join predi-

cates to transitive closure, and some of your execution plans will change. (There are changes in

10gR2 that allow for a different strategy with transitive closure on equality, dependent on a new

hidden parameter _transitivity_closure_retain.)

sysdate Arithmetic Fixed
Consider the following predicates:

where date_col between sysdate and sysdate + 1

where date_col between sysdate - 1 and sysdate

where date_col between sysdate - 1 and sysdate +1

A P P E N D I X A ■ U P G R A D E H E A D A C H E S 459

Prior to 10g, the optimizer treats sysdate as a known constant but treats sysdate +/- 1 like

a bind (or unknown value) variable for purposes of calculating selectivity. The difference also

appears for function calls like trunc(sysdate) and trunc(sysdate) +/- 1. The result of this is

that the optimizer treats the range-based predicates shown as an AND of two separate predi-

cates, using 0.05 (5%) as the selectivity of the bits involving sysdate +/- N. The results of the

computed cardinality are therefore usually incorrect, and often close to meaningless.

This error is fixed in 10g. Suddenly, many range-based queries involving modifications to

sysdate will give the right selectivity and cardinality. But any change in selectivity or cardinality

may have a catastrophic effect on an execution path, even when the change is a correction.

Indexing Nulls
There are some classes of indexed access paths where the calculations change dramatically as

you upgrade to 10.1.0.4.

If you have multicolumn B-tree indexes, and the leading edge of the index is used for a

range scan, and you have user_indexes.num_rows < user_tables.num_rows, then it looks as if

the optimizer loses the cost of visiting the index leaf blocks in its calculations. You only need

one row in the table where every column in the index has a null value for this change to occur,

with a consequential change in access path or join order.

pga_aggregate_target
The memory allocation for various “large-scale” memory operations is now driven by the

parameter pga_aggregate_target if you set workarea_size_policy to auto. The work area for a

single operation (such as a sort, or hash) can be as large as 5% of the target (or 30% when

summed across all the slaves in a parallel operation).

The optimizer calculates the cost of an operation based on that 5% (or 30%). If you have set

the parameter to a value that is too large to be realistic, then it is possible that the 5% will never

be available at run time. This means the optimizer could end up giving hash joins and sort/

merge joins a cost that is too low when compared to the actual resource consumption that has

to take place when the query runs.

In 9i, the pga_aggregate_target does not apply to sessions connected through Shared

Servers (formerly MTS), so the sort_area_size and hash_area_size are still relevant. However,

the optimizer will use the figures relevant to a dedicated server connection in its calculations

even when connected through a Shared Server, so you could find sessions connected through

Shared Servers producing unsuitable execution plans. In 10g, this has changed, and the PGA

takes on the large memory allocations even for Shared Servers.

There are a couple of hidden parameters (_smm_max_size and _pga_max_size) that affect

the maximum size of a single operation—the 5% limit mentioned previously is further limited

to _pga_max_size / 2.This can have severely limiting effects on a system that does large sort or

hash operations, so you may need to switch some sessions temporarily back to using manual

workarea size policy, and setting explicit value for the sort_area_size and hash_area_size.

460 A P P E N D I X A ■ U P G R A D E H E A D A C H E S

Sorting
The algorithms that calculate the cost of a sort have been modified in 9i when you have system

statistics (CPU costing) enabled—and CPU costing is the default for 10g. Most significantly, the

cost of an in-memory sort no longer includes a spurious component for dumping the sorted

data to disk. This means that there may be cases where the cost of a sort is suddenly very much

cheaper than it used to be in earlier versions of Oracle, and this could lead to a dramatic change

in execution plan. However, if you have also enabled the automatic workarea size policy feature,

then the arithmetic changes again, and this problem may not appear.

Grouping
From 9i onwards, the cost of sorting for group by or distinct clauses has been changed to cater

to the fact that the size of the result set could be smaller than the size of the input set. If you

have complex queries that include aggregate subqueries that crunch a large number of rows

down to a small number of rows, then the cost of these subqueries could drop significantly,

resulting in a change in execution plans.

Sanity Checks
There are various sanity checks in the newer versions of Oracle that take place on joins involving

multiple columns. This may make the CBO use individual selectivities from just one side of the

join, rather than picking the selectivity individually for each join condition. It may also result in

the optimizer using the value of 1/num_rows from one of the tables for the overall selectivity, if

the selectivity would otherwise fall below that value.

Going Outside the Limits
Very specific to 10.1.0.4, there is a fix for the problem of predicate values that fall outside the

low/high values for a column. Historically, the predicates column = {constant} and column between

{const1} and {const2} had a selectivity that matched the column density, or 1/num_distinct,

when the {constant} was outside the low/high values for the column. In 10.1.0.4, there seems to

be a bit of “special case” code that adjusts the selectivity depending on how far outside the

range the {constant} is. This applies to equalities, in-lists, and ranges.

This means that you may find queries that used to be safe even when the statistics (especially

the low/high values) were out of date suddenly change their paths. In most cases, the number

of rows predicted by the optimizer drops as the queried values move further and further away

from the known limits.

Type Hacking
Very specific to 10.1.0.4, there is an internal “special case” that addresses some of the problems

of third-party applications that store numbers (particularly sequenced IDs) in a character

column. When the optimizer sees a range-based predicate on a character column where the

low and high values look like numbers, and the predicate tests against something that looks

A P P E N D I X A ■ U P G R A D E H E A D A C H E S 461

like a number, the optimizer applies the standard arithmetic to the numeric equivalents of the

visible values to generate a selectivity.

It is likely that there will be cases where the selectivity increases enormously as a conse-

quence of this, and that this may change the execution plan of some popular queries.

optimizer_mode
See the script first_rows.sql in Chapter 1 for an example of problems associated with use of

first_rows. first_rows is deprecated from 9i—first_rows_1 may be the best bet for many

OLTP systems, with first_rows_10 as a good alternative. The default value in 8i and 9i is choose—

which generally means rule based optimization if there are no statistics on any of the objects

involved in the query, but switching to all_rows optimization if any object in the query has

statistics, or one of the queried objects has some feature that forces cost based optimization to

be invoked.

Rule based optimization is desupported in 10g where the default mode is now all_rows.

Descending Indexes
There is a bug prior to 10g that makes the optimizer double-count the effect of a predicate

involving a descending index, hence produces a cardinality that is much too low. This has been

fixed in 10g, so queries involving descending indexes may change their access paths because

the computed cardinality on one table changes.

Complex View Merging
The parameter _complex_view_merging defaults to false in 8i, and true from 9i. However, 9i

merges views without considering costs. It is only in 10g that the merged and nonmerged costs

are considered and the cheaper option taken. When you upgrade from 8i to 9i, you may want

to stop merging in some queries—the no_merge(view_alias) hint placed in the outer query

block, or the no_merge hint placed in the view itself, can be used to do this.

Unnest Subquery
The parameter _unnest_subquery defaults to false in 8i and true from 9i. However, 9i unnests

without considering costs. It is only in 10g that the costs of the two different options are consid-

ered and the cheaper option taken. When you upgrade from 8i to 9i, you may want to block

unnesting in some queries. The no_unnest hint, placed in the subquery, can be used to do this.

Unnesting is disabled in 8i and 9i (even with the hint) if star_transformation_enabled = true.

Scalar and Filter Subqueries
In 8i and 9i, the size of the hash table used at run time to optimize scalar and filter subqueries

seems to be fixed at 256 entries. In 10g, the size of the hash table is a fixed memory allocation,

which means the number of saved entries can vary.

462 A P P E N D I X A ■ U P G R A D E H E A D A C H E S

When you upgrade, this change may improve the performance of some queries because

the number of saved values can increase. However, if the input and output values for the

subqueries are large (and a subquery returning an unconstrained varchar2 is the biggest threat),

then performance may get worse—with no change in execution plan—as fewer values are

saved and the subqueries are executed more frequently.

Parallel Query Changes x 2
There is an interesting change in strategy for costing parallel queries as you go from version to

version of Oracle. In 8i, queries are optimized for the best serial execution plan before being

run parallel. In 9i, the optimizer assumes that the query is going to run at full parallelism, and

costs accordingly—this tends to bias the plans towards hash joins, and sort/merge joins partic-

ularly. With 10g, the rules change again, and there is a fudge factor of 90% introduced to make

the heavy-duty join strategies slightly less desirable.

Dynamic Sampling
Dynamic sampling was introduced in 9.2 with a default value of 1 and allows the optimizer to

take samples of (at least) 32 blocks from tables during optimization if various conditions are

met. There are 11 different levels of dynamic sampling, which can all be set at the system, session,

query, or table (within query) level.

In 10g, the default level for dynamic sampling is 2, which means that any table without

statistics will have 32 blocks sampled. This could prove particularly helpful when you mix

global temporary tables (GTTs) with normal tables. However, if you regularly run lots of very

small, ad hoc queries involving GTTs, the sampling could turn out to be more labor-intensive

than the underlying query, so you may want to identify the most appropriate way of disabling

the sample or using the dbms_stats package to add representative statistics to the table definition.

Temporary Tables
In 10g, the default value for parameter optimizer_dynamic_sampling is 2, which means that any

object that does not have statistics in place will have 32 blocks sampled at run time. Since

global temporary tables (GTTs) don’t have statistics (unless you’ve played clever tricks), queries

involving global temporary tables may show some surprise changes in execution plan after an

upgrade.

Dictionary Stats
Although I don’t think it’s been stated explicitly in the manuals, there is a brief comment in the

notes to the 9.2.0.5 patch set that you should delete the statistics on the data dictionary tables

before installing the patch, and then re-create them afterwards—so it would seem that Oracle

Corp. has no objection to your having statistics on the dictionary tables in 9.2.

Moreover, given the automatic statistics collection that takes place in 10g, you will find

that you get statistics on the dictionary tables within 24 hours of creating your first 10g database.

A P P E N D I X A ■ U P G R A D E H E A D A C H E S 463

If you have been running SQL against the data dictionary (e.g., from packages that dynamically

generate new partitions for partitioned tables), then you may find that there is some benefit in

having dictionary statistics in place. You may also find that such statistics introduce a perfor-

mance problem when you upgrade. Don’t forget to test your housekeeping code as part of your

regression tests on upgrade.

465

■ ■ ■

A P P E N D I X B

Optimizer Parameters

There are lots of parameters that relate to optimization, and a number of them change their

default value as you move from version to version. If you have a performance problem with a

specific query after upgrading, it is always worth checking to see whether any of the parameters

with new default values have names that seem be to related to the problem query.

For example, several people have complained about performance problems with executions

plans that suddenly include the operation bitmap conversion (from rowids)after upgrading

from 8i to 9i. Check the list of changes and you find that there is a parameter called

_b_tree_bitmap_plans that has changed from false to true. Doesn’t that sound like a good

suspect? Perhaps you could test what happens if you set this back to false. (A better option

appears in 10g, where you could use the no_index_combine() hint on the few queries which

display the problem.)

There are two other sources of information about parameters that might affect the optimizer’s

calculations. One set of values appears in the 10053 trace file; the other set appears (in Oracle

10g only) in the dynamic performance views v$sys_optimizer_env, v$ses_optimizer_env, or

v$sql_optimizer_env. The views report optimizer-related parameters at the system level, the

session level, and the individual child cursor level respectively—the last view also appears as a

raw column called optimizer_env in v$sql.

Perhaps the best place you could go to investigate the effects of parameter changes on the

optimizer is to one specific parameter: optimizer_features_enable. The particular benefit of

this parameter is that it allows you to identify exactly those parameters relating to optimization

that might be causing your upgrade performance problems.

optimizer_features_enable
If you take an Oracle 10.1.0.4 database, modify the parameter optimizer_features_enable to

8.1.7, 9.2.0, and 10.1.0 in turn, and capture the system parameters in a table, you can then

query the table to see which other parameters change at the same time.

Table B-1 summarizes the 48 parameters (many of them hidden parameters) affected.

Some of these parameters don’t even exist in 9i or 8i.

466 A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S

Table B-1. Parameters Affected by optimizer_features_enable (10g)

Name 10.1.0.4 9.2.0.6 8.1.7.4

_always_anti_join choose choose off ***

_always_semi_join choose choose off ***

_b_tree_bitmap_plans true true false

_complex_view_merging true true false

_cost_equality_semi_join true true false

_cpu_to_io 0 0 100 ***

_generalized_pruning_enabled true true false

_gs_anti_semi_join_allowed true true false

_index_join_enabled true true false

_load_without_compile none none none

_local_communication_costing_enabled true false *** false

_new_initial_join_orders true true false

_new_sort_cost_estimate true true false

_optim_adjust_for_part_skews true true false

_optim_new_default_join_sel true true false

_optim_peek_user_binds true true false

_optimizer_compute_index_stats true false false

_optimizer_correct_sq_selectivity true false false

_optimizer_cost_based_transformation linear off off

_optimizer_cost_model choose choose io

_optimizer_dim_subq_join_sel true false false

_optimizer_join_order_control 3 0 0

_optimizer_join_sel_sanity_check true false false

_optimizer_max_permutations 2000 2000 80000

_optimizer_new_join_card_computation true true false

_optimizer_skip_scan_enabled true true false

_optimizer_squ_bottomup true false false

_optimizer_system_stats_usage true true false

_optimizer_undo_cost_change 10.1.0 9.2.0 8.1.7

_ordered_nested_loop true true false

_parallel_broadcast_enabled true true false

_partition_view_enabled true false false

_pre_rewrite_push_pred true true false

A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S 467

*** There are some parameters where the default value of the parameter in the “real” version of the database

does not agree with the value set by Oracle 10g. The differences are as follows:

* _always_anti_join defaults to nested_loops, not off in 8.1.7.4.

* _always_semi_join defaults to standard, not off in 8.1.7.4.

* _cpu_to_io defaults to null, not 100 in 8.1.7.4.

* _union_rewrite_for_gs defaults to choose not yes_gset_mvs in 9.2.0.6.

* _local_communication_costing_enabled defaults to true, not false in 9.2.0.6 (this parameter probably

relates to RAC, rather than distributed queries. I have never been able to find any difference in costs

between distributed queries and single database queries).

The 10053 Trace File
When you enable the CBO trace (event 10053) at level 1, an early section of the trace file shows

the list of optimizer-related parameters. This varies quite significantly from version to version,

so I have included Table B-2 here, cross-referencing the values reported by the different versions.

I find it particularly useful to refer to this from time to time when upgrading a system,

keeping a careful eye on the parameters that change from false to true (e.g., unnest_subquery).

Sometimes a performance problem can appear because a new feature has been enabled—and

this list may tell you which feature is the one that doesn’t work well with your data distribution.

The driving feature of this list is the 10g parameter set. Any parameters that are hidden in

10g but not hidden in earlier versions have their values marked with ** in the columns of the

versions where they used to be visible parameters.

_pred_move_around true true false

_push_join_predicate true true false

_push_join_union_view true true false

_push_join_union_view2 true false false

_query_rewrite_setopgrw_enable true false false

_remove_aggr_subquery true false false

_right_outer_hash_enable true false false

_table_scan_cost_plus_one true true false

_union_rewrite_for_gs yes_gset_mvs yes_gset_mvs*** off

_unnest_subquery true true false

optimizer_dynamic_sampling 2 1 0

optimizer_features_enable 10.1.0 9.2.0 8.1.7

optimizer_mode all_rows choose choose

query_rewrite_enabled true false false

skip_unusable_indexes true false false

Table B-1. Parameters Affected by optimizer_features_enable (10g)

Name 10.1.0.4 9.2.0.6 8.1.7.4

468 A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S

Table B-2. Cross-reference of Parameters Listed in the 10053 Trace File

Name 10.1.0.4 9.2.0.6 8.1.7.4

_add_stale_mv_to_dependency_list true

_always_anti_join choose choose

_always_semi_join choose choose

_always_star_transformation false false false

_b_tree_bitmap_plans true true false

_bt_mmv_query_rewrite_enabled true

_complex_view_merging true true false

_convert_set_to_join false

_cost_equality_semi_join true

_cpu_to_io 0 0

_default_non_equality_sel_check true true true

_disable_datalayer_sampling false

_disable_function_based_index false

_distinct_view_unnesting false

_dml_monitoring_enabled true

_eliminate_common_subexpr true

_enable_type_dep_selectivity true true true

_fast_full_scan_enabled true true true

_fic_area_size 131072

_force_datefold_trunc false

_force_temptables_for_gsets (10g)

_gsets_always_use_temptables (9i)

false false

_full_pwise_join_enabled true

_generalized_pruning_enabled true

_gs_anti_semi_join_allowed true true

_hash_join_enabled true true ** true **

_hash_multiblock_io_count 0 0 0

_improved_outerjoin_card true true true

_improved_row_length_enabled true true true

_index_join_enabled true true false

_left_nested_loops_random true

_like_with_bind_as_equality false false

A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S 469

_local_communication_costing_enabled true

_local_communication_ratio 50

_minimal_stats_aggregation true

_mmv_query_rewrite_enabled false

_nested_loop_fudge 100 100 100

_new_initial_join_orders true true false

_new_sort_cost_estimate true true

_no_or_expansion false false false

_oneside_colstat_for_equijoins true true true

_optim_adjust_for_part_skews true

_optim_enhance_nnull_detection true true true

_optim_new_default_join_sel true

_optim_peek_user_binds true

_optimizer_adjust_for_nulls true true true

_optimizer_block_size 8192

_optimizer_cache_stats false

_optimizer_cbqt_factor 50

_optimizer_cbqt_no_size_restriction true

_optimizer_compute_index_stats true

_optimizer_correct_sq_selectivity true

_optimizer_cost_based_transformation linear

_optimizer_cost_filter_pred false

_optimizer_cost_model choose choose

_optimizer_degree 0

_optimizer_dim_subq_join_sel true

_optimizer_disable_strans_sanity_checks 0

_optimizer_ignore_hints false

_optimizer_join_order_control 3

_optimizer_join_sel_sanity_check true

_optimizer_max_permutations 2000 2000 ** 80000 **

_optimizer_mjc_enabled true

_optimizer_mode_force true true true

Table B-2. Cross-reference of Parameters Listed in the 10053 Trace File (Continued)

Name 10.1.0.4 9.2.0.6 8.1.7.4

470 A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S

_optimizer_new_join_card_computation true

_optimizer_percent_parallel 101 101 0 **

_optimizer_push_down_distinct 0

_optimizer_push_pred_cost_based true

_optimizer_random_plan 0

_optimizer_search_limit 5 5 ** 5 **

_optimizer_skip_scan_enabled true

_optimizer_sortmerge_join_enabled true

_optimizer_squ_bottomup true

_optimizer_system_stats_usage true

_optimizer_undo_changes false false false

_optimizer_undo_cost_change 10.1.0.4

_or_expand_nvl_predicate true true true

_ordered_nested_loop true true false

_parallel_broadcast_enabled true true ** false **

_partial_pwise_join_enabled true

_partition_view_enabled true false ** false **

_pga_max_size 204800 KB

_pre_rewrite_push_pred true

_pred_move_around true true

_predicate_elimination_enabled true

_project_view_columns true

_push_join_predicate true true false

_push_join_union_view true true false

_push_join_union_view2 true

_px_broadcast_fudge_factor 100

_query_cost_rewrite true true true

_query_rewrite_1 true

_query_rewrite_2 true

_query_rewrite_drj true

_query_rewrite_expression true true ** true **

_query_rewrite_fpc true

_query_rewrite_fudge 90

Table B-2. Cross-reference of Parameters Listed in the 10053 Trace File (Continued)

Name 10.1.0.4 9.2.0.6 8.1.7.4

A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S 471

_query_rewrite_jgmigrate true

_query_rewrite_maxdisjunct 257

_query_rewrite_or_error false

_query_rewrite_setopgrw_enable true

_query_rewrite_vop_cleanup true

_remove_aggr_subquery true

_right_outer_hash_enable true

_slave_mapping_enabled true

_smm_auto_cost_enabled true

_smm_auto_max_io_size 248 KB

_smm_auto_min_io_size 56 KB

_smm_max_size 10240 KB

_smm_min_size 204 KB

_smm_px_max_size 61440 KB

_sort_elimination_cost_ratio 0 0 0

_sort_multiblock_read_count 2

_sort_space_for_write_buffers 1

_spr_push_pred_refspr true

_subquery_pruning_enabled true true true

_subquery_pruning_mv_enabled false

_system_index_caching 0 0

_table_scan_cost_plus_one true true false

_union_rewrite_for_gs yes_gset_mvs

_unnest_subquery true true false

_use_column_stats_for_function true true true

active_instance_count 1

bitmap_merge_area_size 1048576

cpu_count 2

cursor_sharing exact

db_file_multiblock_read_count 8 8 8

flashback_table_rpi non_fbt

hash_area_size 131072 2097152 2097152

Table B-2. Cross-reference of Parameters Listed in the 10053 Trace File (Continued)

Name 10.1.0.4 9.2.0.6 8.1.7.4

472 A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S

The following parameters are reported in the 8i and 9i trace files, exist in 10g, but are not

reported in the 10g trace file:

_OPTIMIZER_CHOOSE_PERMUTATION = 0

_SUBQUERY_PRUNING_COST_FACTOR = 20

_SUBQUERY_PRUNING_REDUCTION_FACTOR = 50

_USE_NOSEGMENT_INDEXES = FALSE

optimizer_dynamic_sampling 2 1

optimizer_features_enable 10.1.0.4 9.2.0 8.1.7

optimizer_features_hinted 0.0.0

optimizer_index_caching 0 0 0

optimizer_index_cost_adj 100 100 100

optimizer_mode all_rows choose choose

optimizer_mode_hinted false

parallel_ddl_forced_degree 0

parallel_ddl_forced_instances 0

parallel_ddl_mode enabled

parallel_dml_forced_dop 0

parallel_dml_mode disabled

parallel_execution_enabled true

parallel_query_forced_dop 0

parallel_query_mode enabled

parallel_threads_per_cpu 2

pga_aggregate_target 204800 KB

query_rewrite_enabled false false false

query_rewrite_integrity enforced enforced enforced

skip_unusable_indexes true

sort_area_retained_size 0

sort_area_size 65536 1048576 2097152

sqlstat_enabled false

star_transformation_enabled false false false

statistics_level typical

workarea_size_policy auto

Table B-2. Cross-reference of Parameters Listed in the 10053 Trace File (Continued)

Name 10.1.0.4 9.2.0.6 8.1.7.4

A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S 473

The following parameter is reported only in the 9i trace file, exists in 10g, but is not

reported in the 10g trace file:

_OPTIMIZER_DYN_SMP_BLKS = 32

The following parameter is reported only in the 9i trace file and does not exist in 10g:

_SORTMERGE_INEQUALITY_JOIN_OFF = FALSE

v$sql_optimizer_env
There is a short list of optimizer-related parameters, shown in Table B-3, held with every cursor

in the SGA. This can be queried through view v$sql_optimizer_env. The same list exists at the

session level (as v$ses_optimizer_env) and at the system level (as v$sys_optimizer_env). Given

the long list of parameters that gets dumped into the 10053 trace, it is a little strange that this

list is so short. The values listed here are the defaults for 10.1.0.4 from a system with a single

hyper-threading CPU, in the order they appear when you query the view.

Table B-3. Parameters Recorded for Every Cursor

Name Value

parallel_execution_enabled true

optimizer_features_enable 10.1.0.4

cpu_count 2

active_instance_count 1

parallel_threads_per_cpu 2

hash_area_size 131072

bitmap_merge_area_size 1048576

sort_area_size 65536

sort_area_retained_size 0

db_file_multiblock_read_count 8

pga_aggregate_target 204800 KB

parallel_query_mode enabled

parallel_dml_mode disabled

parallel_ddl_mode enabled

optimizer_mode all_rows

cursor_sharing exact

star_transformation_enabled false

optimizer_index_cost_adj 100

optimizer_index_caching 0

474 A P P E N D I X B ■ O P T I M I Z E R P A R A M E T E R S

query_rewrite_enabled false

query_rewrite_integrity enforced

workarea_size_policy auto

optimizer_dynamic_sampling 2

statistics_level typical

skip_unusable_indexes true

Table B-3. Parameters Recorded for Every Cursor (Continued)

Name Value

475

Index

■Numbers
0 cardinality, calculating, 165

8i

behavior of optimizer in, 3

boundary cases with in-lists in, 48

“double-counting” factor introduced

by, 48

forcing complex view merging in, 7

optimizer_mode options in, 76–77

and parallel execution, 29

and underestimated cardinality in

in-lists, 59

9i

behavior of optimizer in, 3

boundary cases with in-lists in, 48

effects of block sizes in, 14–16

and parallel execution, 29

10.1.0.4, B-tree index problems with, 80–81

10g

appearance of offline optimizer in, 3

boundary cases with in-lists in, 48

costing in, 20–21

CPU costing options available in, 455

enhanced selectivity in, 50

migrating to, 291

out-of-bounds behavior changes in, 49,

54–55

and parallel execution, 30

10g workload statistics, effects of, 20

10gR2

group by in, 390

treatment of 10053 trace file, 403

80/20 approximation

using with bitmap indexes, 188–189,

190, 192

using with bitmap transformations, 203

using with multicolumn indexes, 200

1033 trace, using on CPU usage related to

sorting, 361–362

10032 trace. See also event 10032

checking for optimizer and engine

behavior at run time, 399

examining for pga_aggregate_target,

366–367

for group by and sorting, 390

significance of, 398

and temporary file numbering, 369–370

10033 trace, examining for

pga_aggregate_target, 366–367. See

also event 10033

10046 trace, and temporary file numbering,

370. See also event 10046

10053 trace. See also event 10053

versus 10104 trace event, 346

versus 10104 trace files, 340

and cost of sorts, 371–375

enabling for hash joins, 342

examining for not equal and join

cardinality, 277

and execution plans, 405

and general plans, 416–417

for group by and sorting, 390

for join cardinality implementation, 297

join evaluation summary of, 449–451

and join order [1], 417–423

and join order [2], 423–424

and join order [3], 424

476 ■I N D E X

and join order [4], 424–425

and join order [5], 425–428

and join order [6], 429

and join order [7], 429–432

and join order [8], 433–435

and join order [9], 435

and join order [10], 435

and join order [11], 436–439

and join order [12], 439–441

and join order [13], 441–443

and join order [14], 443–444

and join order [15], 444

and join order [16], 444–445

and join order [17], 445–447

and join order [18], 447–449

and joins, 416

for merge joins without first sorts, 384–385

for nested loop join, 312

and optimizer parameters, 467–473

and outer/inner joins, 308

overview of, 403

parameter settings in, 407–411

parameters in, 468–472

queries in, 404

and query blocks, 411

and sanity checks, 416

for select distinct operation, 390–391

for set operations, 396

and single tables, 414–415

for sorting comparisons, 376, 378

and stored statistics, 412–414

and system statistics, 406

using with bitmap transformations, 205

10104 trace. See also event 10104

versus 10053 trace, 346

versus 10053 trace event, 340

enabling for hash joins, 342

examining for multipass hash joins, 334

resizing operations referenced in, 349–350

values in, 346–347

10132 event, setting with event 10053, 405

■Symbols
**

using with parameters for 10053 trace

file, 467

using with star transformation joins,

256–257

***, meaning in joins for 10053 trace file, 450

****, significance to hash joins, 344

/*+ cursor_sharing_exact */ hint, example

of, 159

+++, using with star transformation joins, 257

■A
accept a profile option in Tuning Advisor,

effect of, 139–140

access_predicates column, addition to

plan_table, 74

active_instance_count parameter

Oracle versions associated with, 471

value for, 473

_add_stale_mv_to_dependency_list

parameter, Oracle versions

associated with, 468

adjusted dbf_mbrc

checking values for, 15

generating values for, 12, 13

agg_sort_* scripts

comment about, 401

examples of, 387, 390

aggregate view, creating result set for, 231

aggregates

characteristics of, 238

and indexes related to sorting, 392–393

relationship to sorting, 387–392

and set operations, 393–398

aliases, reporting for query blocks, 411

all_rows variant of CBO, description of, 1–2

477■I N D E X

alter table set events statements, using with

10053 trace file, 403

alter session command, using with indexes

and tables, 73

always* parameters, Oracle versions

associated with, 236, 466, 468

analyze command

versus dbms_stats package, 453–454

versus dbms_stats.gather_table_stats

procedure, 373

and frequency histograms, 454

relationship to bytes in execution plans,

322, 323

using with frequency histograms, 165, 166

AND

relationship to nulls and not in, 249

using with predicates, 56–57, 58

AND-equal mechanism, upgrade problems

related to, 456–457

anti_01.sql script

comment about, 263

example of, 246

anti-joins

anomaly related to, 248–249

relationship to subqueries, 246–248

Area size in 10053 trace, explanation of, 372

Aries birthdays, recording, 58–59

arithmetic for bitmap transformations,

202–205

array entries, translating into table

entries, 202

AskTom web site, 204

ASSM (automatic segment space

management)

features of, 96–97

and reducing table contention, 96–99

side effects of, 16

relationship to HWM, 12

ASSM blocks, description of, 97

assm_test.sql script

comment about, 113

example of, 97

asterisks (**), using with star transformation

joins, 256–257

audience table. See also December

birthday example

scattering nulls for month_no column

of, 44

determining December birthdays with,

41–42

automatic workarea policy, relationship to

hash joins, 344–345, 348

autotrace

deficiencies of, 199

for join cardinality, 272

for joins by range and join cardinality, 275

limitation of, 18–19, 35

for not equal and join cardinality, 276–277

using in index costing, 65

using with bitmap combinations, 191

using with btree_cost_02.sql query, 71–72

using with correlated columns, 134–135

using with filter operations and query

transformations, 212–213

using with filter_cost_01a.sql, 216

using with histograms, 174–175

using with join cardinality, 267, 268

using with tablescans, 11

■B
_b_tree_bitmap_plans parameter, Oracle

versions associated with, 466, 468

backwards nested loops, significance of, 325

base_line.sql script

comment about, 113

using with test case for clustering_factor,

87–88

baseline formula for index costing, 62

BCHR (buffer cache hit ratio), problems

with, 25

begin proc_name(...)end; syntax, effect on

bind variable substitution, 159

bell curve, using with hist_intro.sql

script, 152

Best NL cost, significance of, 417

478 ■I N D E X

best cost, example of, 191

best_cst, role in bitmap indexes, 186

big_10053.sql script, comment about, 451

binary insertion tree, relationship to sorting

mechanism, 359

bind selectivities

unusual examples of, 57

using with not equal and join cardinality,

277–278

bind variable peeking

overview of, 158

upgrade problems related to, 455–456

bind variables

avoiding in DSS systems, 54

computational errors related to, 51

and frequency histograms, 166

and histograms, 157–159

versus literals, 35

overusing, 38

peeking, 54

and ranges, 52

substituting, 159

using in OLTP systems, 54

bind_between.sql script, comment about, 60

birth_month_*.sql scripts

comment about, 60

model of audience in, 42

bitmap indexes, memory for, 392

bitmap arithmetic

checking 80/20 split with, 188–189

significance of, 202

bitmap combinations

and low cardinality, 192–195

and null columns, 195–199

overview of, 190–192

bitmap conversion (to rowids) line,

significance of, 202

bitmap indexes

versus B-tree indexes, 183–184, 187

calculating I/O costs of, 200

costing strategy of, 187–188

costs of, 186, 201–202

and CPU costing, 198–200

definition of, 202

and DML operations, 185

index component of, 186–187

leaf blocks in, 184

misconception about, 192

and multicolumn indexes, 200

and star transformation joins, 255–256

table component of, 188–190

bitmap minus operations, purpose in

bitmap_cost_04.sql script, 196

bitmap transformations, costs of, 202–205

bitmap_*.sql scripts

comments about, 206

examples of, 181–183, 189, 190, 195,

196–197, 198, 201, 203, 204, 471, 473

blevel

manipulating in bitmap

transformations, 203

setting to 1 for indexes, 84

values for, 70

block addresses, role in sort runs, 357

block sizes

changing for tuning, 16

effects in 9i, 14–16

Blocks to Sort in 10053 trace, explanation

of, 372

blocks, reading into multiblock reads, 21

book_subq.sql script (anti-join anomaly)

comment about, 263

example of, 248

_bt_mmv_query_rewrite_enabled

parameter, Oracle versions

associated with, 468

B-tree bitmap conversions, upgrade

problems related to, 456

B-tree indexes. See also indexes

memory for, 392

479■I N D E X

upgrade problems related to, 459

arranging columns in, 74–75

versus bitmap indexes, 183–184,

187–188, 204

and constraint-generated predicates, 144

and CPU costing, 81–84

determining use of, 205

rebuilding, 71

with three selectivities, 78–81

using clustering_factor with, 67–70

B-tree queries, costs of, 199

B-tree to bitmap conversion, example of,

202–203

btree_*.sql scripts

comment about, 85

examples of, 63–64, 71–72, 77, 78, 82

buckets

in c_skew_ht_01.sql script (height

balanced histograms), 169–172

choosing for histograms, 281

data-type problems associated with, 176

doing arithmetic by, 172

picking for histograms, 283

buckets per frequency histogram, matching

in 10g, 166

buffer sorts

versus sorts, 386

for transitive closure, cost of, 142

bug 3487660 (MetaLink), significance of, 389

bugs

in descending indexes, 301–302

pertaining to repeated predicates, 273

build tables, using with hash joins, 320

buildfrag entry in event 10053, description

of, 339

byte figures in execution plans, figures

for, 322

■C
c_mystats.sql script, comments about,

351, 400

c_skew*.sql scripts

comment about, 180

examples of, 162–163, 169–170

cache statistics, gathering with dbms_stats

package, 27–28

cache-related statistics, collecting, 25–26

calc_mbrc.sql script

comment about, 40

generating values for adjusted dbf_mbrc

with, 12

calculations

of cardinality versus costs, 138

guessing for range predicates, 52

impact of upgrades on, 45

for selectivity, 53–54

cardinality. See also join cardinality

in 10.1.0.4 outside column low/high, 130

and bitmap combinations, 192–195

in bitmap_or.sql script, 198

calculating, 172–174

calculating correctly for execution

plans, 154

calculating versus costs, 138

of columns in accounting system, 127

computing at 0, 165

of data types, 120–121

defining, 72

definition of, 41

of discrete_02.sql, 128

errors in, 51, 59

estimating between 9i and 10g, 137

estimating for December birthday

example, 44

of execution plans, 14

480 ■I N D E X

of execution plan for defaults, 125

of group by, 391

of index lines, 74

and leading zeros, 123

of merge joins, 382–383

and nested-loop-join sanity check,

316, 317

of query transformations, 210

and query transformations, 210

relationship to partitioning, 34

resolution of, 36

rounding, 72

for selectivities used with B-tree

indexes, 79

versus selectivity, 41, 56, 453

of set operations, 395–396

for three-table join, 289

variations for range-based predicates,

50–51

varying, 55–56

cardinality errors, generating from small lists

of values, 47

Cartesian joins. See also joins; merge joins;

nested loop joins

example of, 252

and join order [2], 424

and join order [13], 441–443

and join order [15], 444

and join order [16], 444–445

and join order [17], 445–447

overview of, 385–387

role in join order [9], 435

for transitive closure, 142

cartesian.sql script

comments about, 400

example of, 385–386

CBO (cost based optimizer)

analysis of statements by, 1

errors generated by, 2–3

initial defect in, 25

operational complexity of, 7–8

strategies for, 9

variants on, 1–2

CBO trace. See event 10053

CBO arithmetic matching human

understanding table, 165

ceil() versus round(), considering in B-tree

indexes, 84

char_*.sql script

comment about, 148

example of, 123

character values, using selectivity with,

116–118

character expressions, fixed percentages

used for selectivity on, 133

choose option, using with optimizer_mode, 2

clufac_calc.sql script

comment about, 113

using with clustering_factor, 109–110

cluster size changes, relationship to hash

joins, 345–346

clustering_factor

and bitmap indexes, 184, 185

calculating, 111

and column order, 101–104

correcting statistics related to, 106–112

defect in derivation of, 103

description of, 87

dynamics of, 108–109

enhancing, 111

and extra columns, 104–106

flaw of, 109

and freelists, 92

impact of, 104

impact on optimizer, 112

and reducing contention in RAC (freelist

groups), 99–101

and reducing leaf block contention

(reverse key indexes), 94–96

and reducing table contention (ASSM),

96–99

481■I N D E X

and reducing table contention (multiple

freelists), 90–94

relationship to releasing leaf block

contention, 94–96

and table-contention reduction, 90–94

using with indexes and tables, 67–70

col_order.sql script

comment about, 113

relationship to clustering factor, 101–102

collision counts with ASSM and freelists, 98

column values, relationship to bitmap

index, 193

column = constant, handling in 10.1.0.4, 130

column order, relationship to

clustering_factor, 101–104

columns. See also correlated columns;

dependent columns

arranging in multicolumn indexes, 74–75

in bitmap_cost_01.sql script, 183

cardinality of, 127

creating histograms on, 43

extra columns relative to

clustering_factor, 104–106

importance in indexes, 111

reversing byte order of, 94

storing information in, 119–120

complex view merging, forcing in 8i, 7

_complex_view_* parameters, Oracle

versions associated with, 466, 468

complex/simple subqueries, characteristics

of, 238

computational errors, relationship to bind

variables, 51

concatenated index card, reporting in sanity

checks, 416

constraint_* scripts

comment about, 149

examples of, 144–145, 146, 147

constraint-generated predicates,

relationship to selectivity, 144–147.

See also predicates

constraints

relationship to predicates and dynamic

sampling, 147

using with indexes, 84

contention

reducing in leaf blocks, 94–96

reducing in RAC, 99–101

reducing in tables, 90–94, 96–99

reducing with freelists, 99, 100

_convert_set_to_join parameter

Oracle versions associated with, 468

setting to true, 261

correlated columns. See also columns;

dependent columns

and dynamic sampling, 135, 137–139

relationship to selectivity, 134–140

correlated/noncorrelated subqueries,

characteristics of, 238

cost equals time, justification of, 3–4

cost in CBO, explanation of, 2–5

cost variations, examining for disabled

selected indexes, 194

_cost_equality_semi_join parameter

description of, 236, 237

Oracle versions associated with, 466, 468

costing

in 10g, 20–21

in bitmap indexes, 187

of hash joins, 339–340

modern costing of, 340

traditional costing of hash joins, 345–346

and transformation, overview of, 5–7

costing arithmetic, changing from stored

result to product of selectivities, 317

costing examples

handling partial use of multicolumn

indexes, 76

handling range-based tests, 71–74

index full scans, 76–77

ranges compared to in-lists, 75–76

482 ■I N D E X

costs

calculating for tablescans, 12

calculating versus cardinality, 138

changing with memory allocation and

feature usage, 343–344

comparing for sorting, 375–379

comparing in different sorting

environments, 376–377

converting CPU resource figures into, 407

of count(*), 216–217

definition of, 4

effects of block sizes on, 15

impact of predicate order on, 24

of index-driven access path, 69

of I/O tablescans, 19–21

of parallel tablescans, 30

of query transformations, 210

rounding up, 22

for sorting requirements, 388

of sorts, 370–375

of tablescans, 15, 28

time unit for, 4

count() function, using analytic version

of, 229

count(*), cost of, 216–217

counters, incrementing with

clustering_factor, 67–68

CPU costing

10g options for, 455

and bitmap indexes, 198–200

enabling and disabling in hash_area_size

allocations, 341

enabling for aggregates and sorting, 388

enabling for hash joins, 344

enabling for set operations, 396–397

explanation of, 3

and figures for parallel two, 31

isolating, 23

of join order [18], 448–449

for nested loop join, 313

overview of, 16–22

power of, 22–25

relationship to B-tree indexes, 81–84

relationship to hash joins, 346

upgrade problems related to, 455

CPU resource figures, converting into

costs, 407

CPU time, relationship to memory sorts, 363

CPU usage, relationship to sorting, 360–364

cpu_cost, converting to io_cost, 22

cpu_costing script

comment about, 40

using with 10g, 21

cpu_count parameter

Oracle versions associated with, 471

value for, 473

_cpu_to_io parameter, Oracle versions

associated with, 466, 468

cpuspeed, reporting, 4

CPUSPEED figure, advisory about, 18

CTAS, relationship to set operations, 396

cumulative frequency histogram, definition

of, 157

cursor_sharing parameter

Oracle versions associated with, 471

relationship to bind variables, 158–159

value for, 473

cursors

parameters recorded for, 473–474

reoptimizing for new system statistics, 17

■D
data dictionary

examining statistics in, 42–43

hacking, 108

data segments, discovering activity

against, 26

data types

cardinality of, 120

correcting with histograms, 121

problems with, 175–178

483■I N D E X

data-type errors, appearance of, 118–122

date values, using selectivity with, 116

date_oddity.sql script, 118–119

comments about, 148, 180

data-type problems associated with, 176

db_file_multiblock_read_count parameter

adjusting for bitmap join indexes, 202

changing value of, 189

Oracle versions associated with, 471

relationship to CPU costing, 455

relationship to CPU costing and bitmap

indexes, 200

value for, 473

db_file_multiblock_read_count changing

index cost (table), 189

dbms_lock package, using in test script for

clustering_factor, 88

dbms_random package

uses for, 11

using with hist_intro.sql script, 152

dbms_random.value() procedure, using with

join cardinality, 267

dbms_repair.rebuild_freelists() procedure,

description of, 101

dbms_stats package

upgrade problems related to, 453–454

using with frequency histograms,

164–165, 180

enabling SQL trace with, 156

examining, 107

and frequency histograms, 282

gathering cache statistics with, 27–28

get_param procedure in, 43

using with bitmap combinations, 193

dbms_stats package procedures,

relationship to faking frequency

histograms, 166–167

dbms_stats.gather_index_stats(), calling,

108–109

dbms_stats.gather_table_stats procedure

versus analyze command, 373

method_opt parameter in, 43

problems with, 81

using with sort operations, 355

dbms_stats.set_column_stats procedure,

using, 43

dbms_stats.set_index_stats package

determining use of B-tree index costing

with, 205

using with bitmap transformations, 203

dbms_xplan package

creating, 9

execution plans in, 36

output from, 396

significance of, 9

using with constraint-generated

predicates, 147

using with descending indexes, 303

using with nulls and join cardinality, 293

using with subqueries, 241–242

using with subquery factoring, 224–225

using with transitive closure and join

cardinality, 286

dbms_xplan.display(), 142

dbmsutl.sql script, relationship to execution

plans, 9

December birthday example. See also

audience table

applying CBO to, 41, 56–57

using null values with, 44

decimal, converting hex to, 357

_default_non_equality_sel_check parameter,

Oracle versions associated with, 468

defaults, and histograms, 178–179

defaults.sql script, 124–125

comment about, 149, 180

using with histograms, 178

deg entry in event 10053, description of, 338

Degree in 10053 trace, explanation of, 372

delete_anomaly.sql script, comment

about, 305

484 ■I N D E X

density

examining in frequency histograms, 166

and histograms, 177

importance to faked frequency

histograms, 168

overriding, 157

using from user_tab_columns, 283

working out, 172

dependent columns. See also columns;

correlated columns

relationship to join cardinality

implementation, 298

using profiles with, 140

dependent.sql script, 137

comment about, 149

index statistics from, 136

descending indexes

upgrade problems related to, 461

bugs in, 301–303

descending_bug.sql script

example of, 301–302

comment about, 305

deterministic functions versus scalar

subqueries, 220

dictionary stats, upgrade problems related

to, 462–463

dimension tables

and global temporary tables, 256

relationship to star transformation joins,

253–254

using, 255

using with star joins, 260

direct path reads, relationship to parallel

scans, 30

disable* parameters, Oracle versions

associated with, 468

discrete_*.sql scripts

comment about, 149

examples of, 126, 127

disjuncts, relationship to in-list errors, 45

dist_hist.sql script, 161–162

distinct operation

calculation for, 390–391

and set operations, 395, 396

using in subqueries, 235

_distinct_view_unnesting parameter

description of, 237

Oracle versions associated with, 468

distributed queries, relationship to

histograms, 161–162. See also queries

DML operations, relationship to bitmap

indexes, 185

_dml_monitoring_enabled parameter,

Oracle versions associated with, 468

DSS systems, avoiding bind variables in, 54

dump command, using with sort runs, 357

dynamic sampling

upgrade problems related to, 462

relationship to correlated columns, 135,

137–139

relationship to predicates and

constraints, 147

dynamic_sampling(t1 1) hint, using, 137–138

■E
effective index selectivity

calculating, 76

checking for, 79

example of, 74

overview of, 66–67

effective table selectivity

calculating, 76

checking for, 79

example of, 74

overview of, 67

_eliminate_common_subexpr parameter,

Oracle versions associated with, 468

emp table, tablescan on, 209

_enable_type_dep_selectivity parameter,

Oracle versions associated with, 468

endpoint_actual_value column, population

of, 117

485■I N D E X

endpoint_number column, examining in

user_tab_histograms view, 164

engine, behavior at run time, 398–399

equality, using with joins, 317

errors

in cardinality, 51, 59

computational errors related to bind

variables, 51

in correlated columns, 135

generating with CBO, 2–3

in-list errors, 45

event 10032. See also 10032 trace

and CPU usage related to sorting, 360–361

enabling for sorting, 397

reporting session statistics with, 356–357

event 10033, relationship to session statistics,

356–357. See also 10033 trace

event 10046. See also 10046 trace

enabling at level 8 for I/O wait states, 336

enabling for sorting and I/O, 368

significance of, 15

event 10053. See also 10053 trace

enabling at level 1, 467

overview of, 338–339

event 10104. See also 10104 trace

getting details about memory from, 328

overview of, 336–337

execution plans

and 10053 trace file, 405

for aggregates related to sorting, 387–388

cardinality of, 14

for CTAS, 396

for hash_multi.sql, 333–334

for merge_samples.sql, 381–382

for optimal hash joins, 325

for set operation, 394–395

for anti_01.sql, 246

for bitmap join indexes, 201–202

for bitmap_cost_04.sql, 195–196

for correlated columns, 135

in dbms_xplan from 9.2.0.6, 36

for dist_hist.sql script, 162

example of, 33

filter operations in, 213

for filter_cost_01.sql, 238

functionality of, 8

index fast full scan as, 31

for join cardinality, 271

for join cardinality and difficult bits, 300

for join cardinality implementation,

296, 297

for nested loop join, 308, 309, 312, 313

for nested-loop-join sanity check, 315, 316

for nulls and join cardinality, 292–294

for ordered.sql, 251

potential inaccuracy of, 216

for push_pred_sql, 233

for query transformations, 210

for scalar_sub_01.sql, 218

scripts for reporting of, 9

scripts for standardizing presentation of, 9

selection by optimizer, 6–7

for semi_01.sql, 243

for star_join.sql, 259

for subquery factoring, 224–225

for tablescan, 11

for three-table join, 288, 290–291

for transitive closure, 142

for transitive closure and join

cardinality, 284

for unnest_cost_01a.sql, 240

from v$sql_plan, 213–214

exists subqueries

characteristics of, 238

using semi-joins with, 246

explain plans, 18–19

for bitmap_cost_05.sql, 199

enhancements to, 74

for nulls and join cardinality, 293

486 ■I N D E X

passing statements to bind variables

with, 54

using with cursor_sharing, 159–160

expressions, using with sysdate, 131

extended rowid, relationship to table

contention, 91

extended trace files, generating, 15

extent sizes, setting in temporary

tablespaces, 358

extra_col.sql script

comment about, 113

example of, 104

■F
fake_hist.sql script

comment about, 180

description of, 168

_fast_full_scan_enabled parameter, Oracle

versions associated with, 468

FBI (function-based indexes), correcting

selectivity with, 121–122

_fic_area_size parameter, Oracle versions

associated with, 468

Figures

clustering factor calculation, 68

clustering_factor and multiple freelists, 93

graphing data distribution (for

hist_intro.sql script), 152

histograms and pseudo-nulls, 179

histograms and wrong data types, 177

join cardinality--anomaly, 280

memory usage during a sort, 360

merge-join variations, 380

nested loop joins, 310

onepass hash joins, 327

optimal hash joins, 324

range-based merge join, 384

file numbering, relationship to sorting,

369–370

filter operations, using with merge joins,

383–384

filter subqueries, upgrade problems related

to, 461–462. See also subqueries

filter operations

and complex view merging, 230–232

and pushing predicates, 232–234

and query transformations, 211–214

and scalar subqueries, 217–224

and subquery factoring, 224–230

using ordered_predicates hint with, 214

filter optimization, overview of, 215–217

filter predicate, relationship to

partitioning, 38

filter subqueries, improving performance

of, 224

filter_*.sql script

comment about, 263

examples of, 215–216, 238, 263

filter_predicates column, addition to

plan_table, 74

filtered cardinality

relationship to join cardinality, 266

and transitive closure, 287

first_rows option in optimizer_mode,

features of, 76

first_rows_ variants of CBO, description of,

1–2, 8

flashback_table_rpi parameter, Oracle

versions associated with, 471

flg.sql script, comment about, 113

force* parameters, Oracle versions

associated with, 468

formulas

for index costing, 62

for memory sorts, 362

free list class in v$waitstat, explanation of, 100

free_lists.sql script, comment about, 113

freelist groups

creating tables with, 99–101

drawback of, 101

rebalancing, 101

487■I N D E X

freelist space management option, using, 96

freelists

achieving minimal contention with, 99

creating tables with, 91–94

managing, 92

reducing contention with, 100

selection of, 93

freelists and ASSM, collision counts with, 98

frequency histograms. See also histograms

upgrade problems related to, 454

and dbms_stats, 282

definition of, 157

faking, 166–168

overview of, 162–166

trouble with creation of, 180

using with join cardinality

implementation, 298

full() hint, example of, 82

_full_pwise_join_enabled parameter, Oracle

versions associated with, 468

fun_sel.sql script, comment about, 149

function-based indexes, relationship to

selectivity, 133

■G
gather_index_stats() procedure, example

of, 122

gather_system_statistics role, granting, 17

gby_onekey.sql script

comment about, 401

example of, 389

general plans sections

examining for star transformation joins,

257–258

using with view merging, 231–232

_generalized_pruning_enabled parameter,

Oracle versions associated with,

466, 468

generator object, relationship to subquery

factoring, 224

get_dept_avg() function, calling in

scalar_sub_02.sql, 220

get_index_stats procedure, relationship to

clustering_factor, 107

get_param procedure, using with dbms_stats

package, 43

ggp table, significance of, 404

global temporary tables, relationship to

dimension tables, 256

global variable, using with

scalar_sub_03.sql, 221

Gorman, Tim (“The Search for Intelligent Life

in the Cost Based Optimizer”), 83

grandparent, joining to greatgrandparent,

445–447

greatgrandparent table

example of, 404

relationship to single tables, 414

using joins with, 416–417

group by

in 10gR2, 390

calculation for, 390–391

relationship to sorting, 388–389

grouping, upgrade problems related to, 460

_gs_anti_semi_join_allowed parameter,

Oracle versions associated with,

466, 468

GTTs (global temporary tables)

upgrade problems related to, 462

using with temporary tablespaces, 358

■H
hack_stats.sql script, 32

comments about, 40, 60, 85, 113, 180, 206

relationship to faked frequency

histograms, 168

using with clustering_factor, 107

has_* scripts

comments about, 349, 350

hash bucket, definition of, 324

Hash join entries in event 10053,

descriptions of, 339

488 ■I N D E X

hash joins

access_predicates on, 261

examining performance of, 336–337

investigating with trace files, 335–339

for join order [1], 419–420

modern costing of, 340

multipass hash joins, 331–335

onepass hash joins, 325–331, 335

optimal hash joins, 323–325

overview of, 319–323

relationship to anti-joins, 247

relationship to star transformation

joins, 254

script comparisons for, 341

versus sort/merge joins, 400

traditional costing of, 339–340, 345–346

using with bitmap transformations,

204–205, 205

using with star transformation joins, 257

using with subqueries, 242

hash join trace, setting, 328

hash join 10053 entries, descriptions of,

338–339

hash memory, costs associated with, 343–344

hash tables, limiting, 223

hash& parameters, Oracle versions

associated with, 468

Hash_* scripts, comments about, 349–350

hash_area entries in event 10053,

descriptions of, 338

hash_area_size allocations, enabling and

disabling CPU costing in, 341

hash_area_size parameter, 325–326

difficulty of micro-tuning of, 339–340

increase in, 346

and multipass hash joins, 331–332

versus multitable hashes, 349

Oracle versions associated with, 471

order of activity for, 328–329

and shared servers, 341

testing, 343

using event 10104 with, 336

value for, 473

hash_join_enabled, setting for merge joins,

382

hash_multiblock_io_count, changing values

for, 331

hash_multi.sql script, 333–334

hash_one.sql

trace for query from, 328

and traditional costing, 339–340

hash_opt.sql script

example of, 320–321

using 10053 traces with, 338

hash_pat_bad.sql script (modern

costing), 340

hash_stream_a.sql script, 345–346

heapsorts, overview of, 363

height balanced histograms. See also

histograms

arithmetic related to, 172–175

definition of, 157

overview of, 169–172

hex numbers, relationship to session

statistics, 357

hints. See also ordered hints

/*+ cursor_sharing_exact */, 159

dynamic_sampling(t1 1), 137–138

inline, 224–225

materialize, 35, 224–225

no_merge, 217, 226, 239

no_unnest, 208–209, 212, 219

opt_estimate, 141

ordered_predicates, 23

ordered_predicates with filter

operations, 214

qb_name, 411

swap_join_inputs(), 348

using with indexes, 72

using with joins, 277

using with semi-joins, 244–245

489■I N D E X

hist_*.sql scripts

comment about, 180

example of, 151–152

histograms. See also frequency histograms;

height balanced histograms

and bind variables, 157–159

choosing buckets for, 281

creating for odd data distributions,

124–125

creating on columns, 43

and dangerous defaults, 178–179

and data-type problems, 175–178

and density, 177

and distributed queries, 161–162

ignoring of, 160–162

join arithmetic for, 282

and join cardinality, 280–283

and joins, 160–161

overcoming incorrect data typing

with, 121

overview of, 157

picking buckets for, 283

of ten buckets on normal column, 154–155

HWM (high water mark)

relationship to ASSM, 12

relationship to freelists, 92

■I
(i) subscript, meaning of, 172–173

improved* parameters, Oracle versions

associated with, 468

in_list*.sql scripts

comment about, 60

example of, 49

index blocks, adjusting cost calculation

for, 311

index_combine versus and_equal, 457

index costing, overview of, 61–63

index-driven access path, cost of, 69

index fast full scans

overview of, 31–34

significance of, 9

versus tablescans, 31

index_ffs.sql script

comment about, 40

example of, 31–32, 33–34

index hash joins, upgrade problems related

to, 457

index height, significance of, 63

index hint, example of, 72, 82

_index_join_enabled parameter, Oracle

versions associated with, 466, 468

index selectivity. See also selectivity

combining, 73–74

considering, 72

effectiveness of, 66–67

index skip-scans, upgrade problems related

to, 456

index statistics, adjusting, 205

indexes. See also B-tree indexes;

multicolumn indexes;

optimizer_index_caching

parameter; reverse key indexes

and aggregates related to sorting, 392–393

assessing utility of, 136

deciding on column order of, 101–104

good versus bad indexes, 102

handling on small tables, 84

importance of columns in, 111

naming convention relative to

clustering_factor, 102

pctfree setting on, 64

penalty of using wrong indexes, 104

indexing nulls, upgrade problems related to,

459. See also null values

index-only queries, handling, 77–78

in/exists subqueries, characteristics of, 238

Initial runs in 10053 trace, explanation of, 373

initrans storage parameter, relationship to

query transformations, 209

inline views, using with no_merge hint, 226

490 ■I N D E X

inline hint, using with subquery factoring,

224–225

in-lists

boundary cases with, 48

and cardinality, 59

comparing to ranges, 75–76

upgrade problems related to, 457–458

using with December birthday example,

45–47

Inner table entry in event 10053, description

of, 338

inner tables

and hash tables, 320

and nested loop joins, 308

intersect set operation, description of, 393

intersect_join.sql query

comment about, 263

example of, 260

I/O Cost / pass in 10053 trace, explanation of,

373–374

I/O costs

calculating for bitmap indexes, 200

of join order [18], 448–449

I/O (input/output)

determining extra volume of, 329

impact of sort_area_retained_size on, 364

reducing, 213

and sorting, 368–370

I/O wait states, enabling event 10046 at level

8 for, 336

I/O of tablescans

costs of, 19–21

working out for B-tree indexes, 83

io_cost, converting cpu_cost to, 22

is not null predicates, relationship to join

cardinality, 294

Italians born in December, recording, 56–57

ITL (interested transaction list), relationship

to query transformations, 209

ix_sel entry, relationship to join order [1], 418

ix_sel_with_filters entry

calling tb_sel with, 81

relationship to join order [1], 418

■J
join_*.sql scripts, comments about, 305

join arithmetic, using with histograms, 282

join_card_01a.sql script, 269–270

join_card_01.sql script, 266–267, 303–304

join_card_02.sql script, 267–268

join_card_03.sql script, 268

join_card_04.sql script, 272, 276, 284

join_card_05.sql script, 276–277

join_card_06.sql script, 279, 282

join_card_07.sql script, 284

join_card_08.sql script, 288

join_card_09.sql script, 292

join_card_10.sql script, 299

join cardinality. See also cardinality

alternative viewpoint of, 303–304

and biased joins, 269–271

changes in, 303

and difficult bits, 299–301

formula for, 265–266, 300

and histograms, 280–283

implementation issues related to, 295–299

and inequalities, 276–278

for join order [1], 418

and joins by range, 275–276

and nulls, 291–294

overlaps in, 278–280

problems with, 279

for SQL, 271–274

and transitive closure, 283–288

upgrade problems related to, 456

join_cost_* script, comment about, 318

join_cost_03a.sql script, 314–315

join_cost_03.sql script, 314–315

join evaluation, summarizing for 10053 trace

file, 449–451

491■I N D E X

join order [1], relationship to 10053 trace file,

417–423

join order [2], relationship to 10053 trace file,

423–424

join order [3], relations hip to 10053 trace

file, 424

join order [4], relationship to 10053 trace file,

424–425

join order [5], relationship to 10053 trace file,

425–428

join order [6], relationship to 10053 trace

file, 429

join order [7], relationship to 10053 trace file,

429–432

join order [8], relationship to 10053 trace file,

433–435

join order [9], relationship to 10053 trace

file, 435

join order [10], relationship to 10053 trace

file, 435

join order [11], relationship to 10053 trace

file, 436–439

join order [12], relationship to 10053 trace

file, 439–441

join order [13], relationship to 10053 trace

file, 441–443

join order [14], relationship to 10053 trace

file, 443–444

join order [15], relationship to 10053 trace

file, 444

join order [16], relationship to 10053 trace

file, 444–445

join order [17], relationship to 10053 trace

file, 445–447

join order [18], relationship to 10053 trace

file, 447–449

join predicates

changing for transitive closure, 143

pushing into views, 232–234

join selectivity

calculating for three-table join, 290

formula for, 300

upgrade problems related to, 456

joins. See also Cartesian joins; merge joins;

nested loop joins; star joins

and 10053 trace file, 416

converting subqueries to, 235

converting to subqueries, 235

multitable joins, 347–350

relationship to histograms, 160–161

three-table joins, 288–291

two-column join, 300

using equality with, 317

using hints with, 277

Julian equivalents of dates, example of, 178

■L
lag() analytic function, using with

histograms, 155

“large” number of tables, explanation of, 451

leading zeros, relationship to selectivity,

118–124

leaf block contention, reducing, 90–94

leaf blocks

in bitmap indexes, 184, 186

emptying, 33

modifying in bitmap combinations,

193–194

reducing, 71

reducing contention in, 94–96

relationship to index fast full scans, 32

splitting in relation to freelist groups, 100

_left_nested_loops_random parameter,

Oracle versions associated with, 468

like_test.sql script, comment about, 60, 149

_like_with_bind_as_equality parameter,

Oracle versions associated with, 468

list partitioned tables, using with join

cardinality implementation, 299

list size, relationship to cardinality errors, 47

lists, using in single table selectivity, 45–50

literals versus bind variables, 35

_load_without_compile optimizer

parameter, Oracle versions

associated with, 466

492 ■I N D E X

local* parameters, Oracle versions

associated with, 469

_local_communication_costing_enabled

optimizer parameter, Oracle

versions associated with, 466

log2() factor, using with memory sorts,

362–363

logical I/Os

versus physical I/Os, 349

reducing, 213, 311

logical versus physical reads, 27

loop constructs, examples of, 307–308

loopback database link, using with

dist_hist.sql script, 162

■M
male/female flag example of bitmap indexes,

misconception about, 192

manual versus automatic workarea policy,

345

materialize hint

example of, 35

using with subquery factoring, 224–225

mathematician example of subquery

factoring, 226–230

Max Area size in 10053 trace, explanation

of, 372

max() query

cost of, 388

using with tablescans, 11–12

MBRC statistic

impact on sorting costs, 378

relationship to hash joins, 346

setting, 20, 21

setting for hash joins, 342

meaningless IDs, data-type errors related

to, 122

memory

acquiring for hashing versus sorting, 325

for B-tree indexes, 392

requirements for bitmap indexes, 392

memory clusters, using in onepass hash

joins, 328

Memory for slots

relationship to event 10104, 336

relationship to hash joins, 347

memory usage, relationship to sorting,

359–360

merge joins. See also Cartesian joins; joins;

nested loop joins

blocking, 217

cardinality of, 382–383

Cartesian merge joins, 385–387

mechanism for, 379–384

overview of, 379

requirements for, 353

without first sorts, 384–385

Merge passes in 10053 trace, explanation

of, 373

merge_samples.sql script

comment about, 401

example of, 381–382, 384–385

MetaLink bug 3487660, significance of, 389

_minimal_communication_ratio parameter,

Oracle versions associated with, 469

minus set operation

description of, 393

transforming queries with, 261

_mmv_query_rewrite_enabled parameter,

Oracle versions associated with, 469

mod() function, relationship to column

order, 102

months, generating possibilities for, 46

mreadtim

minimizing in sorting, 378

setting, 20, 21

multiblock reads

changing, 12

reading blocks into, 21

493■I N D E X

multicolumn indexes. See also indexes

handling partial use of, 76

relationship to bitmap indexes, 200

using range scans on, 95

multi-column join key cardinality, value

of, 273

multipass hash joins, overview of, 331–335

multipass sorts, overview of, 354

multitable joins, overview of, 347–350

■N
nchar_types.sql script, comment about, 148

NDV (number of distinct values),

relationship to stored statistics, 412

nested loop joins. See also Cartesian joins;

joins; merge joins

and join order [1], 417

relationship to hash joins, 321–322

example of, 312–314

mechanism of, 307–312

and sanity checks, 314–317

_nested_loop_fudge parameter, Oracle

versions associated with, 469

new* parameters, Oracle versions

associated with, 466, 469

newjo-save line in join order [17],

explanation of, 448

no_merge hint

effect of, 217

using inline views with, 226

using with filter_cost_01.sql, 239

_no_or_expansion parameter, Oracle

versions associated with, 469

no_sort.sql script

comments about, 400

example of, 379

no_unnest hint

using with filter operations and query

transformations, 212

using with query transformations, 208–209

using with scalar_sub_01.sql, 219

not exists

characteristics of, 238

relationship to hash joins, 319

not in subqueries

characteristics of, 238

relationship to anti-joins, 246, 247

significance of, 249–250

using with in-lists, 48

not equal, relationship to join cardinality,

276–278

not null columns, relationship to bitmap

combinations, 195, 196, 198

not null constraint, relationship to

constraint-generated predicates,

145–146

not null predicates, using with

subqueries, 250

notin.sql script, comment about, 263

noworkload statistics

changing costs of, 21

using, 20

ntile() analytic function

using with hist_intro.sql script, 153

using with histograms, 156

null access joins, upgrade problems related

to, 456

null columns

avoiding, 196

relationship to bitmap combinations,

195–199

null dates, representing, 124

null values. See also indexing nulls

avoiding use of, 178

avoiding with not in subqueries, 246

comparing, 260

and join cardinality, 291–294

relationship to single table selectivity, 44

replacing with extreme values, 126

and subqueries, 249–250

num_rows value, changing in user_indexes, 80

numeric data types, using selectivity with, 120

494 ■I N D E X

■O
oddities.sql script, comment about, 60

offline optimizer, appearance in 10g, 3

OLTP systems

and bind variable peeking, 158

using bind variables with, 54

using optimizer_index_caching

parameter with, 310–311

onepass hash joins

versus multipass hash joins, 335

overview of, 325–331

onepass sorts, overview of, 354

_oneside_colstat_for_equijoins parameter,

Oracle versions associated with, 469

opt_estimate hint, advisory about, 141

optim* parameters, Oracle versions

associated with, 466, 469

optimal hash joins, overview of, 323–325

optimal sorts, overview of, 354

optimization code, evolution of, 7

optimizer* parameters, Oracle versions

associated with, 466, 469–470

optimizer* subquery parameters,

descriptions of, 236

_optimizer_ceil_cost parameter, relationship

to rounding, 22

optimizer

an engine behavior at run time, 398–399

execution plans selected by, 6–7

impact of clustering_factor on, 112

optimizer parameters

for cursors, 473–474

and 10053 trace file, 467–473

optimizer_features_enable, 465–467

Oracle versions associated with, 467, 472

overview of, 465

v$sql_optimizer_env, 407, 473–474

optimizer profiles, relationship to selectivity,

139–140

optimizer_dynamic_sampling cursor

parameter, value for, 474

optimizer_dynamic_sampling parameter,

relationship to single-table

predicates, 147

optimizer_features_enable parameter

overview of, 465–467

value for, 473

optimizer_index_* cursor parameters, values

for, 473

optimizer_index_caching parameter. See

also indexes

features of, 75–76

using with OLTP systems, 310–311

optimizer_index_cost_adj parameter

rounding errors related to, 455

versus system statistics, 83

optimizer_mode parameter

identification of variants by legal settings

of, 1–2

upgrade problems related to, 461

value for, 473

optimizer_percent_parallel parameter,

significance of, 29–30

optimizing and parsing, 158

OR

using with bitmap indexes, 196–198

using with predicates, 56–57, 58

_or_expand_nvl_predicate parameter,

Oracle versions associated with, 470

ORA-32035 error, generating, 230

Oracle 8i. See 8i

Oracle 9i. See 9i

Oracle 10g. See 10g

ord_red.sql script, comment about, 263

order by, relationship to sorting, 388–389, 390

ordered hints, using with subqueries,

250–252. See also hints

_ordered_nested_loop parameter, Oracle

versions associated with, 466, 470

ordered_predicates hint

using with CPU costing, 23

using with filter operations, 214

495■I N D E X

_ordered_semijoin subquery parameter,

description of, 236

ordered.sql script

comment about, 263

example of, 251

OR’ed predicates, relationship to in-list

errors, 45

Outer table entry in event 10053, description

of, 338

outer tables

and hash tables, 320

and nested loop joins, 308

outer hash joins, relationship to

semi-joins, 245

output count rule, relationship to B-tree

indexes and selectivities, 79

over() clause

using with hist_intro.sql script, 153

using with histograms, 155

■P
P_A_T, relationship to Shared Servers, 364

pack1.g_ct, global variable of, 222–223

parallel query changes, upgrade problems

related to, 462

parallel execution feature, overview of, 28–31

parallel execution slaves, examining

throughput for, 18

parallel tablescans

costs of, 30

and direct path reads, 30

parallel_* parameters, Oracle versions

associated with, 472

parallel_2.sql script, comment about, 40

_parallel_broadcast_enabled parameter,

Oracle versions associated with,

466, 470

parallel_execution_enabled cursor

parameter, value for, 473

parallel_query_* cursor parameters, values

for, 473

parallel_threads_per_cpu cursor parameter,

value for, 473

parallel.sql script, comment about, 40

parameter settings in 10053 trace file,

overview of, 407–411

parameters. See optimizer parameters

parsing and optimizing, 158

_partial_pwise_join_enabled parameter,

Oracle versions associated with, 470

partition sizing, problems with, 344

Partition Exchange Loading, explanation

of, 38

partition views, deprecation of, 48

_partition_view_enabled parameter, Oracle

versions associated with, 466, 470

partitioning, 34–39

partition-level statistics. See also run-time

statistics, statistics

example of, 36

problems with, 38–39

partitions, relationship to onepass hash

joins, 328

partition.sql script

comment about, 40

example of, 34–35

pat_*.sql scripts, comments about, 351,

375–376, 400

pctfree setting on index

explanation of, 64

considering in column order, 102

handling in bitmap indexes, 184

PCTFREE setting, relationship to ASSM

blocks, 97

performance of hash joins, overview of,

336–337

PGA (process global area), relationship to

Shared Servers and P_A_T, 364

pga_aggregate_target parameter

converting from sort_area_size to, 377

example of, 374–375

micro-tuning, 339–340

496 ■I N D E X

Oracle versions associated with, 472

relationship to sorting, 365–368

running, 349–350

setting for hash joins, 343

testing, 343

upgrade problems related to, 459

value for, 473

_pga_max_size parameter, Oracle versions

associated with, 470

physical versus logical I/Os, 349

physical versus logical reads, 27

PK/FK relations, using histograms with, 161

plan_run* scripts, comment about, 40

plan_table

examining for nested loop join, 313

new columns in, 74

querying for CPU costs, 24

PL/SQL, relationship to cursor_sharing

parameter, 159

popular value

definition of, 172

example of, 174

showing for histograms and join

cardinality, 281

significance of, 173

ppasses entry in event 10053, description

of, 339

_pre_rewrite_push_pred parameter, Oracle

versions associated with, 466, 470

_pred_move_around parameter, Oracle

versions associated with, 467, 470

predicate values outside the limits, upgrade

problems related to, 460–461

predicate order, impact on costs, 24

_predicate_elimination_enabled parameter,

Oracle versions associated with, 470

predicates. See also constraint-generated

predicates; range-based predicates

applying for join cardinality, 304

bug related to, 273

calculating combinations of, 56

conversion of, 45

for merge joins, 383, 384

problems with, 58–59

relationship to constraints and dynamic

sampling, 147

and selectivity, 132–133

for three-table join, 290, 291

using two predicates in single table

selectivity, 55–57

using with nulls and join cardinality, 293

prefetch_test*.sql scripts

comment about, 318

example of, 309

probe passes, role in multipass hash joins, 332

probe rows, collecting for onepass hash

joins, 329

probe tables, using with hash joins, 320,

326–327

probefrag entry in event 10053, description

of, 339

probing the hash table, explanation of, 324

process ID, relationship to freelists, 91

processes, selection of freelists by, 93

product movements, tracking, 104

product_check, selecting from and

narrowing, 228

profiles, accepting, 139–140

_project_view_columns parameter, Oracle

versions associated with, 470

pruning subqueries, relationship to hash

joins, 322

push* optimizer parameters, Oracle

versions associated with, 467

push_*.sql script, comment about, 263

_push_join* parameters, Oracle versions

associated with, 470

push_pred.sql script, 232

push_subq.sql script (filtering and query

transformations), 211–212

pushing predicates, relationship to filter

operations, 232–234

497■I N D E X

pv.sql script, comment about, 60

_px_broadcast_fudge_factor parameter,

Oracle versions associated with, 470

■Q
qb_name hint, using with query blocks, 411

queries. See also distributed queries

in 10053 trace files, 404

btree_cost_02.sql, 71–72

costs of, 61

for data from given dates, 89–90

manipulating before optimizing, 7

optimizing, 231

running in 10g upgrade, 49

transforming with minus set operator, 261

using with not in and in-lists, 48

query blocks, relationship to 10053 trace

file, 411

query transformations

and filter operations, 211–214

future of, 260–262

life cycle of internal code for, 207

star transformation joins, 252–258

query* parameters, Oracle versions

associated with, 470–471

query_index_* cursor parameters, values

for, 474

query_rewrite_* parameters, Oracle versions

associated with, 467, 472

query_rewrite_enabled, relationship to

transitive closure, 144

■R
RAC, reducing content in, 99–101

range scans

relationship to nested loop joins, 308

relationship to reverse key indexes, 95

selectivity of, 124

range-based joins, relationship to join

cardinality, 275

range-based predicates. See also predicates

relationship to single table selectivity,

50–55

using selectivity with, 115

with strange decay pattern, examples of,

128–129

range-based tests, handling, 71–74

ranges

comparing to in-lists, 75–76

relationship to bind variables, 52

ranges_*.sql scripts, comment about, 60

read requests, requirements of, 20

rebuild_test.sql script, comment about, 85

“recursive hash join,” example of, 333

_remove_aggr_subquery parameter

description of, 237

Oracle versions associated with, 467, 471

resc entry in event 10053, description of, 338

reverse key indexes. See also indexes

and range scans, 95

relationship to clustering_factor, 94

reversed_ind.sql script, comment about, 113

reverse.sql script, comment about, 113

_right_outer_hash_enable parameter

description of, 237

Oracle versions associated with, 467, 471

rolling partition maintenance, explanation

of, 38

round() versus ceil(), considering in B-tree

indexes, 84

rounding

of cardinality, 72

of character values, 118

differences in, 51

rounding errors, upgrade problems related

to, 455

rounding costs up, 22

498 ■I N D E X

row size

calculating, 323

relationship to hash joins, 322–323

Row size in 10053 trace, explanation of, 372

Rows in 10053 trace, explanation of, 373

rule option, using with optimizer_mode, 2

rule-based trick, using with transitive

closure, 143

run time, behavior of engine at, 398–399

run-time engine, stack-driven nature of, 398

run-time statistics, location of, 3. See also

partition-level statistics; statistics

■S
sanity checks

and 10053 trace file, 416

for aggregates related to sorting, 391

performing for nested loop joins, 314–317

upgrade problems related to, 460

sas_*.sql scripts

comments about, 400

example of, 375–376

scalar subqueries. See also subqueries

relationship to filter operations, 217–224

upgrade problems related to, 461–462

benefits of, 221, 222

versus deterministic functions, 220

improving performance of, 224

scalar_*.sql scripts

comment about, 263

examples of, 218, 219–220, 221

scripts

agg_sort_2.sql, 390

agg_sort.sql, 387, 401

anti_01.sql, 246, 263

assm_test.sql, 97, 113

base_line.sql, 87–88, 113

big_10053.sql, 451

bind_between.sql, 60

birth_month_*.sql, 60

birth_month_01.sql script, 42

bitmap_*.sql, 206

bitmap_cost_01.sql, 181–183

bitmap_cost_02.sql, 190

bitmap_cost_04.sql, 195

bitmap_cost_05.sql, 198

bitmap_cost_06.sql, 201

bitmap_cost_07.sql, 203

bitmap_cost_08.sql, 204

bitmap_mbrc.sql, 189

bitmap_or.sql, 196–197

book_subq.sql, 248, 263

btree_*.sql, 85

btree_cost_01.sql, 63–64

btree_cost_02.sql query, 78

btree_cost_05.sql, 82

c_mystats.sql, 400

c_skew*.sql, 180

c_skew_freq.sql, 162–163

c_skew_ht_01.sql, 169–170

calc_mbrc.sql, 40

calc_mbrc.sql script, 12

cartesian.sql, 385–386, 400

char_*.sql, 148

char_seq.sql, 123

clufac_calc.sql, 113

clufac-calc.sql, 109–110

col_order.sql, 101–102, 113

constraint_*, 149

constraint_01.sql, 144–145

constraint_02.sql, 146

constraint_03.sql, 147

cpu_costing.sql, 40

date_oddity.sql, 118–119, 148, 176, 180

defaults.sql, 124–125, 149, 178, 180

delete_anomaly.sql, 305

dependent.sql, 137, 149

descending_bug.sql, 301–302, 305

discrete_*.sql, 149

499■I N D E X

discrete_01.sql, 126

discrete_02.sql, 127

dist_hist.sql, 161–162

extra_col.sql, 104, 113

fake_hist.sql, 168, 180

filter_*.sql, 263

filter_cost_01a.sql, 216

filter_cost_01.sql, 208, 238, 263

filter_cost_02.sql, 215–216

first_rows.sql, 8

flg.sql, 113

free_lists.sql, 113

fun_sel.sql, 149

gby_onekey.sql, 389, 401

hack_stats.sql, 32, 40, 60, 85, 107, 113, 168,

180, 206

has_cpu_harness.sql, 350

has_nocpu_harness.sql, 349

Hash_*, 349

hash_area_size, 325–326

hash_multi.sql, 333–334

hash_one.sql, 339–340

hash_opt.sql, 320–321

hash_pat_bad.sql, 340

hash_stream_a.sql, 345–346

hist_*.sql, 180

hist_intro.sql, 151–152

in_list*.sql, 60

in_list_10g.sql, 49

index_ffs.sql, 31–32, 33–34, 40

intersect_join.sql, 263

join_card_01a.sql, 269–270

join_card_01.sql, 266–267, 303–304

join_card_02.sql, 267–268

join_card_03.sql, 268

join_card_04.sql, 272, 276, 284

join_card_05.sql, 276–277

join_card_06.sql, 279, 282

join_card_07.sql, 284

join_card_08.sql, 288

join_card_09.sql, 292

join_card_10.sql, 299

join_cost_*, 318

join_cost_03a.sql, 314–315

join_cost_03.sql, 314–315

like_test.sql, 60, 149

merge_samples.sql, 381–382, 384–385, 401

nchar_types.sql, 148

no_sort.sql, 379, 400

notin.sql, 263

oddities.sql, 60

ord_red.sql, 263

ordered.sql, 251, 263

parallel_2.sql, 40

parallel.sql, 40

partition.sql, 34–35, 40

pat_*, 350

pat_*.sql, 400

pat_dump.sql, 375–376

plan_run*, 40

prefetch_test*.sql, 318

prefetch_test_01.sql, 309

prefetch_test_02.sql, 309

push_*.sql, 263

push_pred.sql, 232

push_subq.sql, 211–212

pv.sql, 60

ranges_*.sql, 60

ranges.sql, 60

rebuild_test.sql, 85

for reporting execution plans, 9

reversed_ind.sql, 113

reverse.sql, 113

sas_*.sql, 400

sas_dump.sql, 375–376

scalar_*.sql, 263

scalar_sub_01.sql, 218

scalar_sub_02.sql, 219–220

500 ■I N D E X

scalar_sub_03.sql, 221

selectivity_one.sql, 60

semi_01.sql, 243, 263

set_ops.sql, 393, 396, 401

set_system_stats.sql, 40

setenv.sql, 40, 60, 85, 113, 180, 206, 263,

305, 318, 401, 451

short_sort.sql, 398–399, 401

similar.sql, 180

snap_*.sql, 400

snap_myst.sql, 355–356

snap_ts.sql, 355–356

sort_demo_*, 400

sort_demo_01b.sql, 366

sort_demo_01b.sql script, 374–375

sort_demo_01.sql, 354–355, 400

star_*.sql, 263

star_join.sql, 258

star_trans.sql, 252–253

sysdate_01.sql, 130–131, 149

tablescan_*, 40

trans_*.sql, 149

trans_close_01.sql, 141

trans_close_02.sql, 141–142

treble_hash_auto.sql, 347–348

two_predicate_01.sql, 60

type_demo.sql (cardinalities), 295

unnest_*.sql, 263

unnest_cost_01a.sql, 240

unnest_cost_02.sql, 240

view_merge_01.sql, 8, 230

with_*.sql, 263

with_subq_02.sql, 227

“The Search for Intelligent Life in the Cost

Based Optimizer,” 83

select * from table, relationship to hash

joins, 323

select statements, analysis by CBO, 1

selectivity. See also index selectivity; single

table selectivity; table selectivity

calculating, 172–174

versus cardinality, 41, 56, 453

and character values, 116–118

and constraint-generated predicates,

144–147

and correlated columns, 134–140

and daft data types, 118–122

data-type problems associated with, 177

and date values, 116

and deadly defaults, 124–126

and discrete dangers, 126–130

enhancement in 10g, 50

enhancing, 121

of fixed percentages on character

expressions, 133

and function figures, 132–133

and function-based indexes, 133

and join cardinality, 268, 270–271, 273

of joins by range, 275

and leading zeros, 122–124

and nested-loop-join sanity check, 316

and numeric data types, 120

and optimizer profiles, 139–140

optimizer’s calculation for, 53–54

and outlying values, 126–130

of range scans, 124

and range-based predicates, 115

and surprising sysdate, 130–132

and transitive closure, 141–144

using with B-tree indexes, 78–81

selectivity rules, relationship to join

cardinality, 298

selectivity_one.sql script, comment about, 60

semi_01.sql script

comment about, 263

example of, 243

501■I N D E X

semi-joins

definition of, 245

relationship to subqueries, 243–246

session statistics

for optimizer and engine behavior at run

time, 398–399

relationship to sorting and merge

joins, 356

set operations, relationship to aggregates,

393–398

set_index_stats procedure, relationship to

clustering_factor, 107

set_ops.sql script

comment about, 401

example of, 393, 396

set_system_stats.sql script, comment

about, 40

set_xxx_stats procedure, using with faked

frequency histograms, 167

setenv.sql script, comments about, 40, 60, 85,

113, 180, 206, 263, 305, 318, 351,

401, 451

Shared Servers, relationship to P_A_T, 364

shared pool, flushing, 17

short_sort.sql script

comment about, 401

example of, 398–399

similar.sql script, comment about, 180

simple/complex subqueries, characteristics

of, 238

“single table” access paths

relationship to 10053 trace file, 414

summary of calculations for, 417

single table selectivity. See also selectivity

and null values, 44

overview of, 41–43

and problems with multiple predicates,

58–59

and range predicates, 50–55

and two predicates, 55–57

using lists in, 45–50

“single-row table” rule, relationship to join

order [1], 417

single-row subqueries, characteristics of, 238

single-table predicates, relationship to

optimizer_dynamic_sampling

parameter, 147

skew predicates, examples of, 165

skip scans, relationship to index costing, 62

skip_unusable_indexes parameter

value for, 474

Oracle versions associated with, 472

_skip_unusable_indexes optimizer

parameter, Oracle versions

associated with, 467

_slave_mapping_enabled parameter, Oracle

versions associated with, 471

SM join calculation, example of, 385

smm* parameters

Oracle versions associated with, 471

relationship to sorting, 366

snap_*.sql, scripts

comments about, 351, 400

examples of, 355–356

sort (aggregate), significance of, 14

sort operations, completing quickly, 363–364

sort runs

block addresses in, 357

writing to disk, 358

sort unique, example of, 397

Sort width in 10053 trace, explanation of, 372

sort* parameters, Oracle versions

associated with, 471

sort_* parameters, Oracle versions

associated with, 472

sort_area_* cursor parameters, values for, 473

sort_area_retained_size

impact on I/O, 364

overview of, 364–365

setting, 365

significance of, 365

502 ■I N D E X

sort_area_size parameter

and comparisons needed, 362

converting to pga_aggregate_target

from, 377

relationship to temporary extent sizes,

358–359

setting to smallest value, 363

sort_demo_* scripts

comments about, 400

examples of, 354–355, 364, 366, 374–375, 400

sort_multiblock_read_count parameter,

relationship to sorting, 367

sorting

and aggregates, 387–392

comparing costs of, 375–379

and CPU usage, 360–364

data sets, 359

and group by, 388–389

and heapsorts, 363

and I/O, 368–370

levels of, 353–354

and memory usage, 359–360

modifying behavior of, 364–365

and order by, 388–389, 390

overview of, 353

and pga_aggregate_target, 365–368

and temporary file numbering, 369–370

upgrade problems related to, 460

sorting algorithm, significance of, 359

sorting requirements, costs for, 388

sort/merge joins

versus hash joins, 400

performing for join order [1], 418–419

sorts

avoiding in join order [17], 446

and buffer sorts, 386

cost of, 370–375

and merge joins, 384–385

_spr_push_pred_refspr parameters, Oracle

versions associated with, 471

SQL

join cardinality for, 271–274

splitting for hash joins, 322

transformation into equivalent

statements, 5–7

SQL statement, writing for ages and numbers

of people in a room, 227–230

SQL trace, enabling with dbms_stats

package, 156

SQL Tuning Advisor, accept a profile option

in, 139–140

sqlstat_enabled parameter, Oracle versions

associated with, 472

sreadtim, setting, 20, 21

star joins, costs of, 258–260. See also joins

star transformation joins, costs of, 252–258

star_*.sql scripts

comment about, 263

example of, 258

star_transformation_enabled parameter

Oracle versions associated with, 472

significance of, 256

value for, 473

star_trans.sql script, 252–253

statements

analysis by CBO, 1

reoptimizing, 158

writing for ages and numbers of people in

a room, 227–230

statistics. See also partition-level statistics;

run-time statistics; table-level

statistics

adjusting for indexes, 205

for bitmap combinations, 193

correcting for clustering_factor, 106–112

and dbms_stats package, 453–454

from dependent.sql, 136

examining in data dictionary, 42–43

generating for tables, 32

handling on small tables, 84

relationship to column order, 103

503■I N D E X

for sample table and index, 64–65

for SYS_NC00005$ column, 133

statistics_level parameter

Oracle versions associated with, 472

value for, 474

stored statistics, relationship to 10053 trace

file, 412–414

stored outlines, trap associated with, 159–160

subqueries. See also filter subqueries; scalar

subqueries; unnest subqueries

and anti-joins, 246–249

categorizing, 237–243

converting joins to, 235

converting to joins, 235

examples of, 234–236

and not in, 249–250

and nulls, 249–250

and ordered hints, 250–252

and semi-joins, 243–246

subquery factoring

using with query transformations, 208

benefits of, 226

example of, 35

relationship to filter operations, 224–230

using with hist_intro.sql script, 152

subquery filters, performance of, 216

subquery parameters, examples of, 236–237

subquery* parameters, Oracle versions

associated with, 471

surrogate keys, data-type errors related to, 122

swap_join_inputs() hint, using with hash

joins, 348

synthetic keys, data-type errors related to, 122

sys_op_countchg() technique, correcting

cluster_factor statistics with,

106–111

sys_op_*() functions, examples of, 109, 261

sys.aux_stats$ table, results in, 16–17

sysdate arithmetic, upgrade problems

related to, 458–459

sysdate pseudo-column, relationship to

selectivity, 130–132

sysdate_01.sql script

comment about, 149

example of, 130–131

system statistics

collecting, 16–17, 19–20

effects of, 83

enabling for B-tree indexes, 81–82

versus optimizer_index_cost_adj, 83

relationship to 10053 trace file, 406

using, 18

system statistics CBO, evolution of, 9

_system_index_caching parameter, Oracle

versions associated with, 471

■T
t1_i2_bad index, example of, 102

table contention

reducing (ASSM), 96–99

reducing (multiple freelists), 90–94

table prefetching, relationship to nested loop

joins, 308

table selectivity, overview of, 67. See also

selectivity

_table_scan_cost_plus_one parameter,

Oracle versions associated with,

467, 471

table-level constraint, example of, 147

table-level statistics

computing, 35

gathering in 10g, 123

problems with, 38–39

relationship to partitioning, 37

tables. See also temporary tables

adding for join order [1], 417–422

compacting, 112

creating with multiple freelists, 91–94

generating statistics for, 32

“large” number of, 451

reducing contention in, 90–94, 96–99, 100

504 ■I N D E X

relationship to “single-row table” rule, 417

using clustering_factor with, 67–69

using pctfree storage parameter with, 64

tablescan_* scripts, comment about, 40

tablescan_01.sql script, building test case for,

9–10

tablescans

building test case for, 9–10

calculating costs of, 12

conceptualizing, 9

costs of, 15, 28

creating test environment for, 9

dropping costs of, 12

on emp table, 209

executing, 21

execution plan for, 11

versus index fast full scans, 31

and parallel execution, 28–31

tb_sel, calling with ix-sel_with_filters

entry, 81

_temp_tran_block_threshold hidden

parameter, relationship to star

transformation joins, 256

temporary extent sizes, choosing, 358

temporary file numbering, relationship to

sorting, 369–370

temporary tables, upgrade problems related

to, 462. See also tables

test cases. See scripts

three-table join, example of, 288–291,

314–315

Tom Kyte’s web site, 230

Total CPU sort cost

converting to standard units, 419

in 10053 trace, 374

Total Temp space used in 10053 trace,

explanation of, 374

trace files, investigating hash joins with,

335–339

tracefile_identifier, using with hash joins, 342

traditional costing of hash joins.

See hash joins

traditional CBO, evolution of, 9

trans_*.sql script, comment about, 149

trans_close_*.sql scripts, 141–142

transformation and costing, overview of, 5–7

transitive closure

and Cartesian merge joins, 385–386

upgrade problems related to, 458

inconsistency of, 144

and join cardinality, 283–288

relationship to selectivity, 141–144

Treble_* scripts, comments about, 351

treble_hash_auto.sql script, 347–348

trunc() function, relationship to column

order, 102

Tuning Advisor, accept a profile option in,

139–140

two_predicate_01.sql script, comment

about, 60

two-column join, example of, 300

type hacking, upgrade problems related to,

460–461

type_demo.sql script (cardinalities), 295

■U
UGA (user global area), relationship to

Shared Servers and P_A_T, 364

unbounded closed and open ranges,

examples of, 53

union set operation, description of, 393

union all, using with not equal and join

cardinality, 278

_union_rewrite_for_gs optimizer parameter,

Oracle versions associated with,

467, 471

unique scans, relationship to nested loop

joins, 308

unnest subqueries, upgrade problems

related to, 461. See also subqueries

unnest* subquery parameters,

descriptions of, 236, 237

505■I N D E X

unnest_*.sql scripts

comment about, 263

examples of, 240, 241

_unnest_subquery parameter, Oracle

versions associated with, 467, 471

upgrade problems

and AND-Equal mechanism, 456–457

and bind variable peeking, 455–456

and B-tree bitmap conversions, 456

and complex view merging, 461

and CPU costing, 455

and dbms_stats, 453–454

and descending indexes, 461

and dictionary stats, 462–463

and dynamic sampling, 462

and frequency histograms, 454

and grouping, 460

and index hash joins, 457

and index skip-scans, 456

and indexing nulls, 459

and in-lists, 457–458

and null access joins, 456

and optimizer_mode, 461

overview of, 453

and parallel query changes, 462

and pga_aggregate_target parameter, 459

and predicate values outside the limits,

460–461

and rounding errors, 455

and sanity checks, 460

and scalar/filter subqueries, 461–462

and sorting, 460

and sysdate arithmetic, 458–459

and temporary tables, 462

and transitive closure, 458

and type hacking, 460–461

and unnest subqueries, 461

upgrades

and changes in calculations, 45

problems with, 43, 453

_use_column_stats_for_function parameter,

Oracle versions associated with, 471

user_indexes view

checking for nested-loop-join sanity

check, 316–317

examining in relationship to correlated

columns, 136

lowering, 80

user_tab_columns, using density from, 283

user_tab_histograms view

checking, 42

gaps in, 172

querying, 155, 163, 164

■V
v$segstat dynamic performance view,

collecting cache-related statistics

with, 25–26

v$sessstat view, using, 356

v$sql_optimizer_env parameter

examining, 407

overview of, 473–474

v$sql_plan_statistics

examining, 213

examining for merge joins, 383

values, relationship to bitmap index, 193

view merging

relationship to filter operations, 230–232

upgrade problems related to, 461

view_merge_01.sql script

comment about, 8

example of, 5, 230

■W
web sites

AskTom, 204

baseline formula for index costing, 62

“The Search for Intelligent Life in the Cost

Based Optimizer”, 83

Tom Kyte, 230

506 ■I N D E X

where clause

relationship to single table selectivity, 58

removing from scalar_sub_01.sql, 219

with_*.sql scripts

comments about, 263

example of, 227

workarea policy, relationship to hash

joins, 345

workarea_size_policy parameter

and 10053 trace for cost of sorts, 371

and indexes, 392–393

Oracle versions associated with, 472

relationship to sorting, 366, 367

value for, 474

■X
x$ksppi, options in, 407

■Z
zero cardinality, calculating, 165

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database

programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,

administration, wireless, wired, storage, backup, certifications,

trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:

J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make

suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as

PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software

methodology, best practices, and how programmers interact with

the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your

projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let

anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where

technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get

help on Microsoft technologies covered in Apress books, or

provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

	Cost-Based Oracle Fundamentals
	Table of Content
	Chapter 1 What Do You Mean by Cost?
	Chapter 2 Tablescans
	Chapter 3 Single Table Selectivity
	Chapter 4 Simple B-tree Access
	Chapter 5 The Clustering Factor
	Chapter 6 Selectivity Issues
	Chapter 7 Histograms
	Chapter 8 Bitmap Indexes
	Chapter 9 Query Transformation
	Chapter 10 Join Cardinality
	Chapter 11 Nested Loops
	Chapter 12 Hash Joins
	Chapter 13 Sorting and Merge Joins
	Chapter 14 The 10053 Trace File
	Appendix A Upgrade Headaches
	Appendix B Optimizer Parameters
	Index

